

Abbildung 1: Arbeits- und Ergebnisebenen des Teilprojektes Forstwissenschaft

Tabelle 1:Termine und Umfang der Freilanduntersuchungen (Die Zahlen geben die Anzahl der beprobten Testgehölze an.)

Table 1:Dates and Volume of Out-door-measurement (The figure shows the number of tested trees.)

	August	andere	Mai	August	andere	Mai	August	andere	Mai	August
		Termine			Termine			Termine		
	1996	1997	1997	1997	1998	1998	1998	1999	1999	1999
Anwuchskontrolle aller		30.000						45.000		
Kulturgehölze										
Forstschutzbegang aller		Х			Х			X		
Kulturen										
Vitalitätsansprache aller			441			396			372	
Testgehölze										
Entnahme von Blattproben an			401	384		396				
allen Testgehölzen										
Entnahme von Blattproben an	25						60		60	20
ausgewählten Testgehölzen										
Messung des Wasserpotentials			401	400		396			372	
an allen Testgehölzen										
Messung des Wasserpotentials							36			40
an ausgewählten Testgehölzen										
Messung der Blattfläche an			401	400		396			372	
allen Testgehölzen										
Messung der Blattfläche an							36			40
ausgewählten Testgehölzen										
Massacrandon			404	400		200			070	
Messung der			401	400		396			372	
Chlorophyllfluoreszenz an allen										
Testgehölzen	25						36			40
Messung der	25						30			40
Chlorophyllfluoreszenz an										
ausgewählten Testgehölzen										
Computertomographie an							9			
Alteichen							3			
, attorner										
Wurzelgrabungen an jeweils 9				X			X			
Kulturgehölzen				-						
Bestimmung der Bodenaktivität			Х	Х		Х	Х		Х	
auf jeweils 3 Testflächen										
Vegetationsaufnahmen und		Х	Х		X	Х		Х	Х	
Sukzessionsbeobachtung auf										
den Testparzellen										

Tabelle 2: Testgehölze von 1997 bis 1999

Table 2: Tested Trees from 1997 to 1999

Gehölzart	Testfläche	Anzahl	Anzahl	Anzahl	Alter 1997 [a]
		1997	1998	1999	
Acer campestre	T4	12	12	12	5
	T03	1	1	1	30
Alnus glutinosa	T4	20	13	15	5
Carpinus betulus	T4	12	11	11	5
Fraxinus excelsior	T4	20	20	19	5
	T01	12	8	8	7
Populus nigra	T01	-	-	1	55
Populus tremula	Т3	-	3	3	15
Prunus spinosa	T4	20	20	20	5
	Т3		1	1	5
	Т8	20	15	15	5
	T03	5	5	5	10
Quercus robur	T4	40	30	28	5
	T7	20	20	19	6
	T01	12	10	9	7
	Т3	20	20	19	10
	Т3	10	10	10	30
	T03	5	5	5	30
	Т3	15	15	13	200
	T1	10	9	8	200
Salix alba	T6	3	3	3	30
Salix aurita	T4	-	3	3	0
Salix caprea	Т3	-	3	3	20
	T4	-	3	3	0
Salix alba x fragilis	T1	-	-	1	30
	Т8	80	45	43	5
	T7	20	20	20	6
	T2	1	1	1	20
	T6	2	2	2	20
	T02	2	2	2	20
Salix triandra	T4	5	5	5	2
Salix viminalis	T4	1	0	1	20/1
	T6	1	1	1	20
Ulmus laevis	T1	3	3	3	40
	T03	2	2	2	30
	T4	40	40	40	5
	T7	20	20	18	7
	Т3	1	1	1	5
	T1	6	6	4	5

Zusätzlich zu den Testflächen aller Teilprojekte wurden Gehölze auf den Flächen T01 = Lütkenwisch Fähre, T02 = Dorn, T03 = Fährdamm untersucht.

Tabelle 3: Testgehölze für die Tagesgangmessung (Teilmenge aus allen Testgehölzen, Tabelle2)

Table 3:Tested Trees for the Measurement of daily Course (a Part of the Whole, table 2)

Gehölzart	Testfläche	Anzahl	Anzahl	Anzahl	Alter 1997 [a]
		1997	1998	1999	
Acer campestre	T4	-	1	1	5
Alnus glutinosa	T4	-	1	1	5
Fraxinus excelsior	T4	-	1	1	5
	T01	-	1	1	7
Populus nigra	T01	-	-	1	55
Populus tremula	Т3	-	3	3	15
Prunus spinosa	T4	-	1	1	5
	Т3		1	1	5
	Т8	-	1	1	5
Quercus robur	T4	-	2	2	5
	Т7	-	2	2	6
	T01	-	1	1	7
	Т3	2	2	2	10
	Т3	2	2	2	30
	Т3	1	1	1	200
	T1	1	1	1	200
Salix aurita	T4	-	3	3	0
Salix caprea	Т3	-	1	1	20
	T4	-	2	2	0
Salix alba x fragilis	T1	-	-	1	30
	Т8	-	3	3	5
	Т7	-	2	2	6
Salix viminalis	T4	-	-	1	20/1
Ulmus laevis	T1	-	1	1	30
	T4	-	1	1	5
	T7	-	1	1	7
	Т3	1	1	1	5

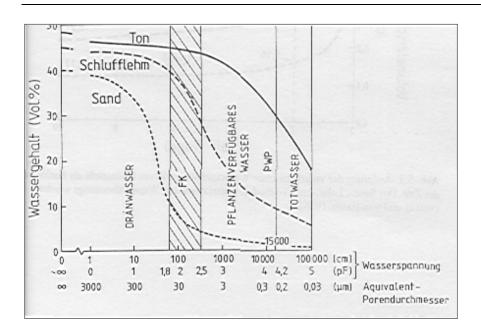


Abbildung 2: Beziehung zwischen Wassergehalt und Wasserspannung im Boden, EHLERS 1996

Figure 2: The Relation between Water Amount and Water Tension in the Soil, EHLERS 1996

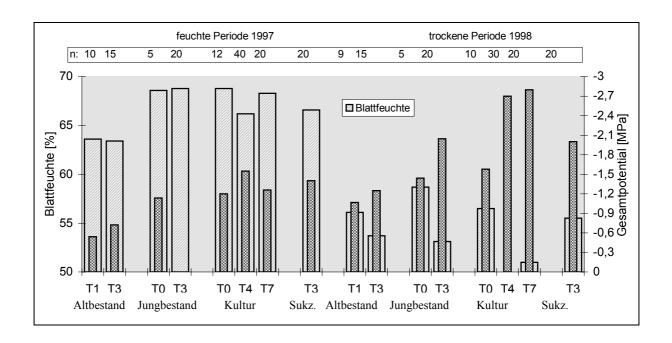
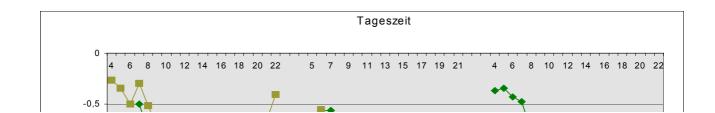



Abbildung 3: Zusammenhang zwischen Blattwassergehalt (Mittelwerte) und Wasserpotential (Mittelwerte) bei *Quercus robur*

Figure 3: Relationship between Water Amount in Leafs (Average) and Water Potential (Average) for *Quercus robur*

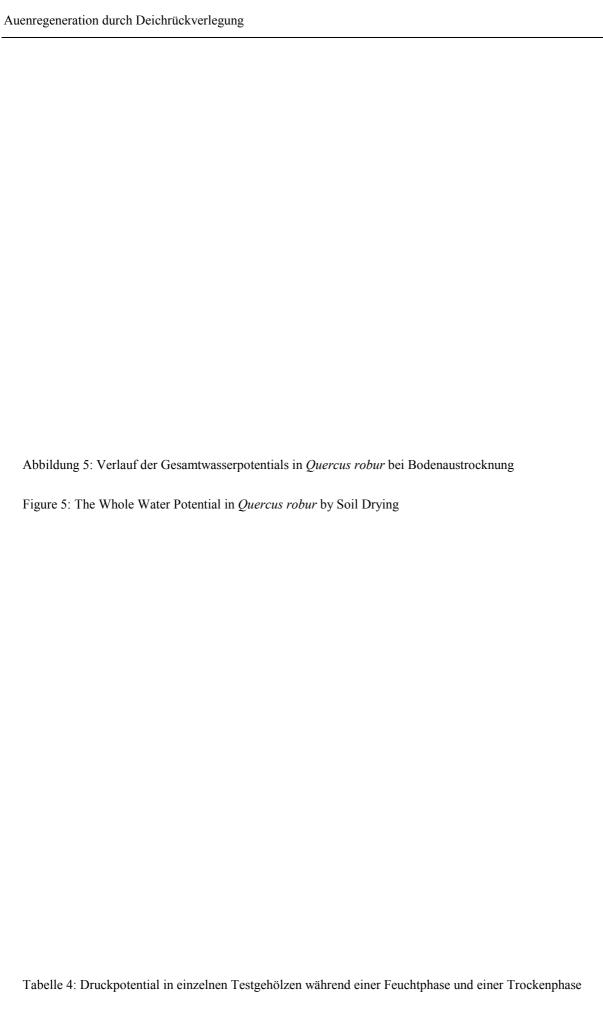


Table 4: The Pressure Potential in single Trees during a humid and a dry Period

Feuchtphase	Alter a	Höhe m	Ö MPa	O osmol/kg	O MPa	Z MPa	P MPa
		über Boden	1111	00111011115	1111 W		
Quercus robur	5	1	-0,5	0,59	-1,339	0,00	0,839
Ouercus robur Quercus robur	5 10	1 1,5	-0.8 -1,1	0.478 0,52	-1.085 -1,180	$0.00 \\ 0.00$	0.285 0,080
Quercus robur	150	5	-1,3	0,632	-1,435	0,05	0,085
Quercus robur	150	10	-1,5	0,762	-1,730	0,10	0,130
Quercus robur	150	20	-1,7	0,943	-2,141	0,20	0,241
Salix aurita	2	1	-0,3	0,567	-1,287	0,00	0,987
Salix caprea	20	1,5	-0,7	0,536	-1,217	0,00	0,517

Trockenphase	Alter	Höhe	Ö	0	0	Z	P
	a	m	MPa	osmol/kg	MPa	MPa	MPa
		über Boden					
Quercus robur	5	1	-1,9	0,78	-1,771	0,00	-0,129
Quercus robur	5	1	-1,7	0,627	-1,423	0,00	-0,277
Quercus robur	10	1,5	-1,6	0,626	-1,421	0,00	-0,179
Quercus robur	150	5	-1,5	0,657	-1,491	0,05	-0,059
Quercus robur	150	10	-1,7	0,704	-1,598	0,10	-0,202
Salix aurita	2	1	-1,3	0,765	-1,737	0,00	0,437
Salix caprea	20	1,5	-2	0,712	-1,616	0,00	-0,384

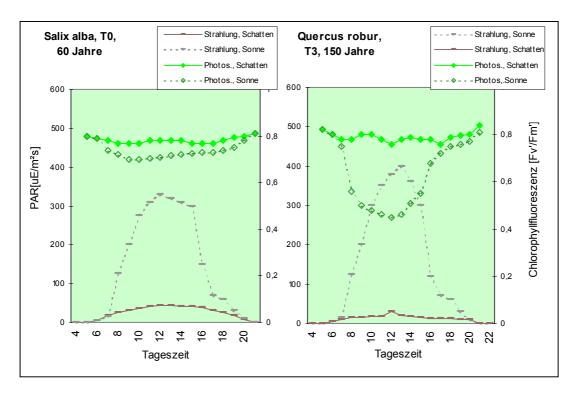


Abbildung 6: Tagesgang der Photosyntheseaktivität und der Strahlung bei Weide und Eiche

Figure 6: A dally Course of Photosynthesis Activity and Sun Radiation for Willow and Oak

Die integrierte Betrachtung des Gesamtwasserpotentials und der Photosyntheseaktivität in Gehölzen der Aue läßt die folgende Typisierung zu:

Optimisten – keine verringerte Photosynthese bei hoher Strahlung, das entspricht einem ständig hohen Wasserdurchsatz

• etablierte Gehölze von Salix alba, Salix alba x fragilis, Salix fragilis, Salix triandra, Prunus spinosa

Pessimisten – reduzierte Photosynthese bei hoher Strahlung, das entspricht einem ständig reduzierten Wasserdurchsatz

- alle jungen, direkt besonnten Gehölze,
- ältere Gehölze von Quercus robur, Fraxinus excelsior, Salix caprea

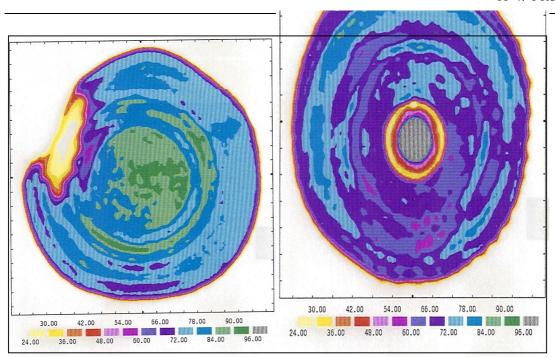


Abbildung 7: Tomogramm Baum 2 (links) und Baum 12 (rechts)

Figure 7: Tomogram from tree 2 (left) and tree 12 (right)

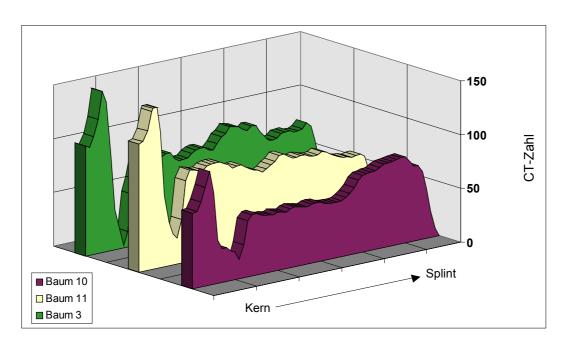


Abbildung 8: CT-Zahlen (indirektes Maß für die Holzfeuchte) entlang eines Kern - Splint - Transektes (Süd - Nord)

Figure 8: Number of CT (indirext Order for Humidity into Timber of the Trunk) along a Transekt from Center to Periphery

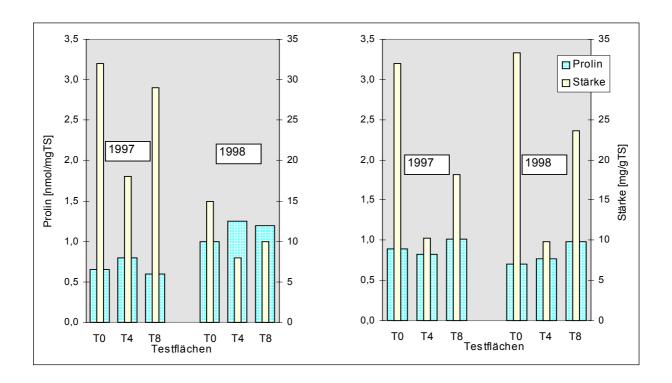


Abbildung 9: Prolin- und Stärkegehalte bei Kulturgehölzen von *Quercus robur* (links) und *Prunus spinosa* (rechts) 1997 und 1998, (Grundgesamtheit vergleiche Tabelle 2)

Figure 9: The Contents of Prolin and of Starch in planted Trees, *Quercus robur* (left) and *Prunus spinosa* (right) 1997 and 1998, (Totalnumber like Table 2)

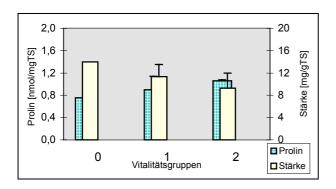


Abbildung 10: Prolin- und Stärkegehalte der Alteichen (n = 15) auf der FlächeT3, sortiert nach Vitalität

Figure 10: The Contents of Prolin and of Starch in old Oaks (n = 15) on the Investigation Area T3, sorted in according to Vitality

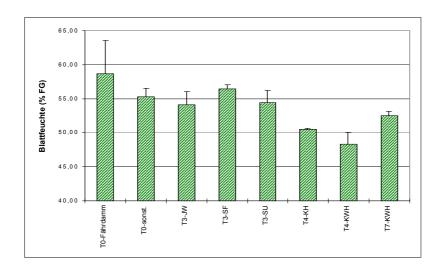


Abbildung 11: Die Blattfeuchte bei Quercus robur, 1998, (Grundgesamtheit vergleiche Tabelle 2)

Figure 11: The content of Water in Leafs from Quercus robur, 1998, (Totalnumber like Table 2)

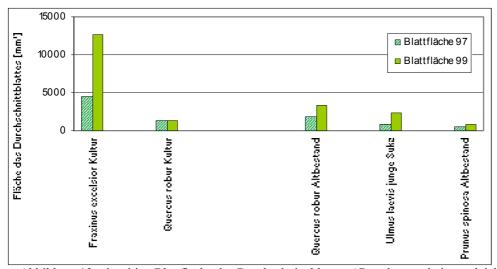


Abbildung 12: einseitige Blattfläche des Durchschnittsblattes, (Grundgesamtheit vergleiche Tabelle 2)

Figure 12: The Index of one-side Leaf Area (Average), (Totalnumber like Table 2)

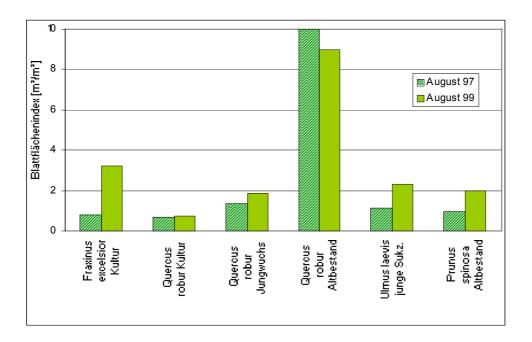


Abbildung 13: Blattflächenindex (einseitige Blattfläche des Einzelgehölzes [cm²] /Standraum des Einzelgehölzes [cm²]), (Grundgesamtheit vergleiche Tabelle 2)

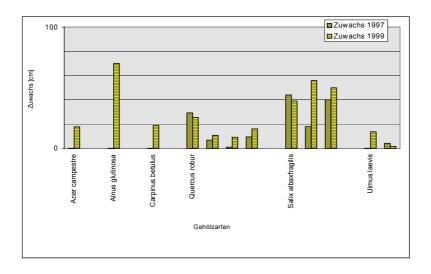


Abbildung 14: Belaubungsgrad ausgewählter Kulturgehölze, (Grundgesamtheit vergleiche Tabelle 2)

Figure 14: The Percentage of Leafity for several cultivated Trees, (Totalnumber like Table 2)

Abbildung 15: Höhenzuwachs ausgewählter Kulturgehölze, (Grundgesamtheit vergleiche Tabelle 2)

Figure 15: The Increase in Height for several cultivated Trees, (Totalnumber like Table 2)

Tabelle 5: Blattflächen und Wurzellängen von Kultur- und Jungwuchsgehölzen

Table 5: The one-side Leaf Area and the Length of roots of Trees in different Ages

Baumart	Alter	Blatt- fläche97	Blatt- fläche98	Wurzel- länge97	Wurzel- länge98	Index97 Wurzellänge/	Index98 Wurzellänge/
	а	cm ²	cm²	cm	cm	Blattfläche	Blattfläche
Quercus roburT3	10	10005	11994	12700	13500	1,3	1,1
Quercus roburT4	5	1300	1500	3500	3800	2,7	2,5
Quercus roburT4	5	986	1105	3400	3500	3,4	3,2
Ulmus laevis T4	5	2123	3571	8500	8700	4,0	2,4
Ulmus laevis T4	5	1123	1371	8200	8300	7,3	6,1

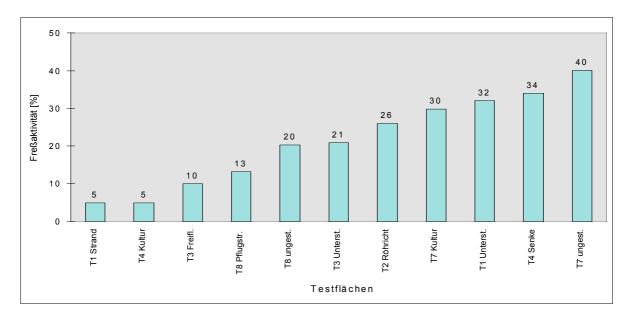


Abbildung 16: Mittlere Bodenaktivität in den Vegetationsperioden 1997 und 1998

Figure 16: Average of Soil Activity during the Vegetationperiodes 1997 and 1998

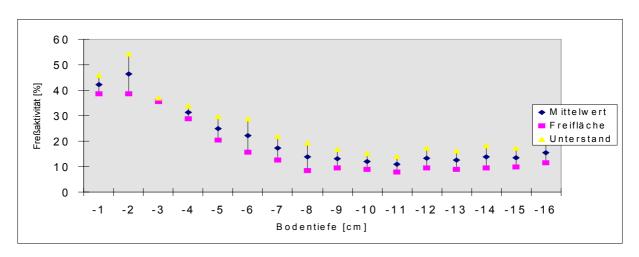


Abbildung 17: Bodenaktivität in Abhängigkeit von der Überschirmung, und der Tiefe auf der Testfläche Eichwald (T3) in den Vegetationsperioden 1997 und 1998

Figure 17: Soil Activity depending on Sun Protection and Soil Depth on Test Area T3 during the Vegetationperiodes 1997 and 1998

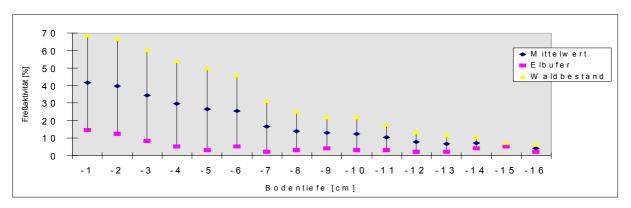


Abbildung 18: Bodenaktivität in Abhängigkeit von der Überstauung Elbholz (T1), Vegetationsperioden 1997 und 1998

Figure 18: Soil Activity depending on Flooding and Soil Depth on Test Area T1 during the Vegetationperiodes 1997 and 1998



Abbildung 19: Übersicht der Pflanzschemata und der Pflanzverbände

Figure 19: A Survey of Pattern and of Density in Plantings

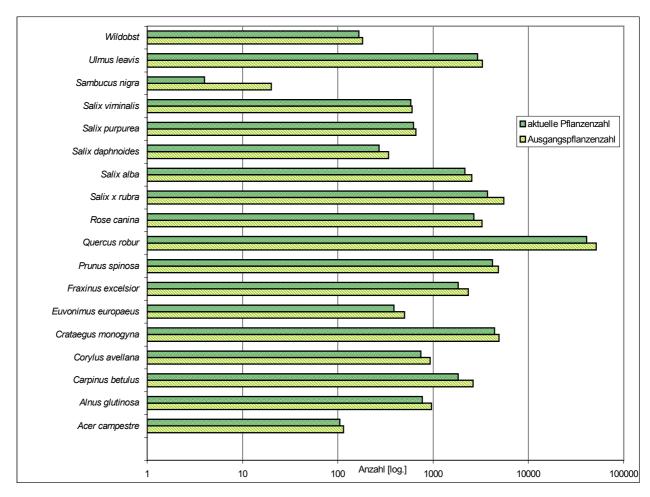


Abbildung 20: Entwicklung der Pflanzenzahlen von 1997 bis 1999 nach Gehölzarten (logarithmisch)

Figure 20: The Development of Number of Plants from 1997 to 1999 sorted out in Species of Trees (logarithm)

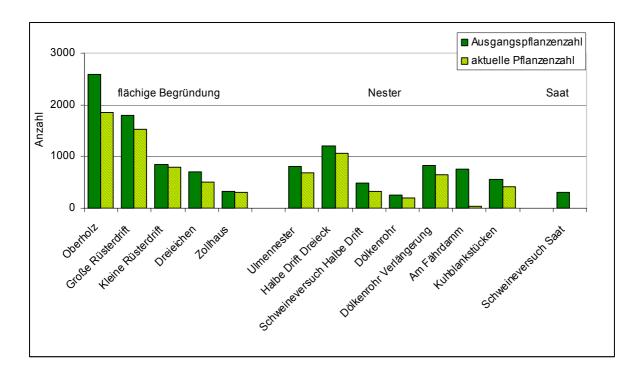


Abbildung 21: Anzahl der Bäume und Sträucher pro Hektar auf den Kulturflächen

Figure 21: Number of Trees and Bushes per Hectare

Zusammenfassend kann die Initialpflanzung von Auwald-Gehölzen nach 3-4 Standjahren als gelungen bezeichnet werden. 80% der ausgebrachten Gehölze sind angewachsen. Von diesen durchliefen ca. 80% eine positive Vitalitätsentwicklung. Der Beobachtungszeitraum beinhaltete typische Witterungsextreme der Aue, wie Spätfrost, Hochwasser und Trockenperioden, so daß für die Zukunft eine Fortschreibung der positiven Gehölzentwicklung erwartet werden kann.

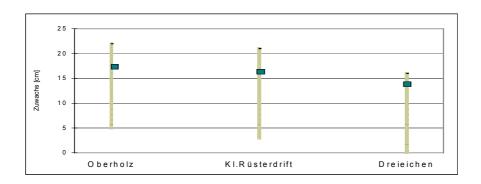


Abbildung 22: Höhenzuwachs an *Quercus robur* im dritten Standjahr (n = 500 pro Testfläche)

Figure 22: The Increase in Height for *Quercus robur* in the 3th Year after Plantation

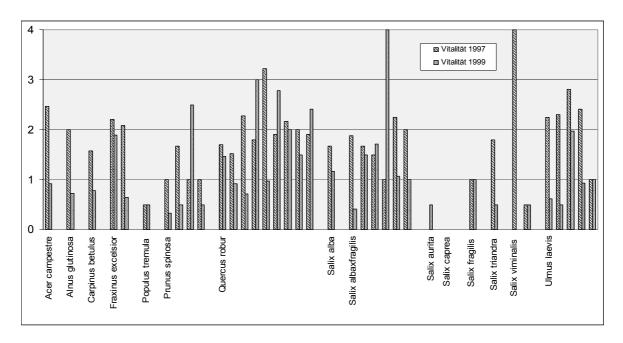


Abbildung 23: Vitalität nach Gehölzart und –alter, (Grundgesamtheit vergleiche Tabelle 2); 0 = Ideal, 4 = tot

Figure 23: The Vitality for The Species and the Age of Trees, (Totalnumber like Table 2); 0 = ideal, 4 = daed

Tabelle 6: Übersicht über die beprobten Testflächen und Zuordnung der Populationen

Table 6: Survey about Test Areas and Populations

Population	Testflächen	Anzahl
1-Kultur	T7-KI. Rüsterdrift (1-40)	91
	T4-Oberholz (41-91)	
2-Altbestand	T1-Elbholz (1-38)	83
	T3-Eichwald (39-83)	
3-Jungwuchs	T3-Eichwald (1-80)	80
4-Sukzession	T3-Eichwald (1-85)	85

Tabelle 7: Vergleich der vier untersuchten Eichen-Populationen hinsichtlich ihrer Diversitätsmaße

Table 7: Comparison of the investigated Oak Populations in case of there genetic Diversity

	Kultur	Altbestand	Jungwuchs	Sukzession
mittlere Anzahl der Allele	3,7	3,6	3,6	4,0
mittlere Anzahl der Genotypen	5,3	5,3	4,7	5,8
Genpooldiversität	1,4	1,6	1,3	1,6
Multilocusdiversität	62,7	154,8	26,9	103,5
Heterozygotiegrad	0,22	0,26	0,15	0,24

Tabelle 8: Flächen der Vegetationsbeobachtung

Table 8: Areas of Observation of Vegetation

Testfläche	Vegetationsaufnahmen	Sukzessionsbeobachtung
	Anzahl der Flächen	Anzahl der Flächen
T1 - Elbholz	2	4
T2 - Lütkenwisch	2	3
T3 - Eichwald	4	4
T4 - Oberholz	4	4
T7 - Kleine Rüsterdrift	3	3
T8 - Große Rüsterdrift	4	4
T0 - Dorn	2	2
T0 - Eichelsaat	3	3
T0 - Ulmennester	2	2
T0 - Fährdamm	2	2
T0 – Lütkenwisch-Fähre	2	4
T0 – Suhle	2	2
T0 - Cumlosen	2	4

Prognose der Auwaldentwicklung **Statische Parameter** Erfassung des Istzustandes Abgeleitete Parameter Klima Hydraulik Boden Durchflüsse Topographie Bodenwasser Pegel Fitneß von Einzelgehölzen Stoffeinträge und -austräge Ansiedlung von Einzelgehölzen Pflanzengesellschaften Ausbreitung von Zustand von Einzelgehölzen Pflanzengesellschaften

Abbildung 24: Schema der Arbeitsschritte bis zur Prognose

Figure 24: Pattern for Working-Steps to the Prediction

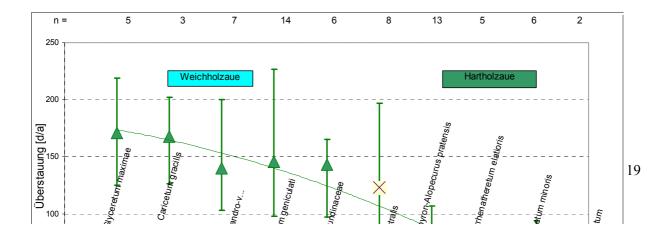


Abbildung 25: Überstauungstoleranz von Pflanzenbeständen

Figure 25: Flooding of Plant-Societies in Days / Year

Tabelle 9: Wasserpotential in Gehölzen und im Boden

Table 9: The Water Potential in Trees and in Soil

Gehölzart	Anzahl der	Durchschnittliches	Minimales	Durchschnittliches	Minimales
	Messungen	Wasserpotential im	Wasserpotential	Wasserpotential im	Wasserpotential
		Blatt	am Blatt	Wurzelraum	im Wurzelraum
Prunus spinosa	35	- 2,05 MPa	- 2,9 MPa	- 0,01 MPa	- 0,05 MPa
Ulmus laevis	39	- 1,48 MPa	- 2,0 MPa	- 0,01 MPa	- 0,03 MPa
Quercus robur	121	- 1,37 MPa	- 2,9 MPa	- 0,01 MPa	- 0,03 MPa
Salix spec.	87	- 0,96 MPa	- 1,62 MPa	- 0,01 MPa	- 0,01 MPa

Tabelle 10: Eintrittswahrscheinlichkeiten für gehölzschädigende Standortzustände

Table 10: The Probability of taking place tree-damaging State of Stand

	Jährlichkeit	Gehölzen
Überstauung über Gehölzhöhe innerhalb der Vegetationsperiode länger als 3 Tage (GRÖNGRÖFT 1998)	variiert nach Geländehöhe: maximal 8 - 30% (Außerhalb der Flutrinnen)	Keimlinge und einjährige Gehölze, Kleine Gehölze (unter 20 cm)
Eisgang (BfG 1998)	variiert nach Geländehöhe: maximal 1 – 12%	Gehölze mit einem Brusthöhendurchmasser unter 5 cm (mündlich Herr v. Mierbach und Her Granitzki)
Bodenaustrocknung mit einem Bodenwasserpotential unter –0,3 MPa in der Vegetationsperiode (SCHWARZ 1999, MONTENEGRO et al. 2000, DWD 1999)	in Oberböden mit Tonanteil über 50% und bei topographischer Höhe über 16,2m 25%, PATZ et al. 1999a	 Alle Gehölze ohne tieferreichende Wurzeln: Einjährige Weichholzaue-Gehölze, Zwei- bis dreijährige Hartholzaue-Gehölze, Ausgenommen Prunus spinosa, Rosa canina, Crataegus monogyna
Bodenaustrocknung mit einem Bodenwasserpotential unter –0,01 MPa in der Vegetationsperiode (SCHWARZ 1999, MONTENEGRO et al. 2000, DWD 1999)	Bei einer topographischen Höhe unter 16,2m 40%	Keimlinge von Weichholzaue- Gehölzen
Beweidung, Verbiß (vergleiche 4.3.6)	85 %, r	 Gehölze kleiner als 1,5m Ausgenommen Gehölze mit Stacheln und mit hohem Wiederausschlagvermögen
Lichtkonkurrenz	In etabliertem Röhricht (Glyceretum maximae, Phalaridetum arundinaceae, Scirpo-Phragmitetum) 90 %	Alle Gehölzkeimlinge,Kleine, sich bewurzelnde Äste
Blattfressende Insekten und Mäuse (vergleiche 4.3.6)	5%	Junge Quercus robur, Alnus glutinosa, Evonimus europaea
Spätfrost (DWD 1998)	In Senken 12%, PATZ et al. 1999a	Junge Quercus robur, Fraxinus excelsior

Daraus läßt sich schlußfolgern:

- Forstliche Begründung von Gehölzbeständen ist mehr als die Beschleunigung von Wiederbewaldung, da mit dem gezielten Ausschluß hindernder Faktoren und mit der Berücksichtigung der spezifischen Standortanforderungen ein tatsächlicher Synergieeffekt erzielt wird.
- Die natürliche Wiederbewaldung erfolgt über Vorwaldgehölze, die extreme, Klimaxgehölze schädigende Standortzustände überstehen.
- Die natürliche Wiederbewaldung wird durch das Zusammentreffen der Faktoren beschleunigt, die die Sukzession und das Überleben von Gehölzen positiv beeinflussen.