13.2 Abbildungen

Abb. 1:	Wassereinzugsgebiete der Bundesrepublik Deutschland	12
Abb. 2:	Lage des Untersuchungsgebietes	18
Abb. 3:	Darstellung des Untersuchungsgebietes	20
Abb. 4:	Geologie des Elbtales bei Lenzen	25
Abb. 5:	Topographie des Untersuchungsraumes (Ausschnitt)	28
Abb. 6:	Topographie des Lütkenwischer Vordeichslandes	30
Abb. 7:	Summenkurve der Elbwasserstände am Pegel Lenzen während dreier	
	Zeitabschnitte	32
Abb. 8:	Differenz der Eintrittshäufigkeit niedriger und hoher Wasserstände am Pegel	
	Lenzen der Zeitreihe 1964 - 1997 gegenüber 1899 - 1963	33
Abb. 9:	Monatliche Hauptwerte des Pegels Lenzen (Reihe 1964 - 1997)	35
Abb. 10:	Abweichungen in den Monatsmittelwerten des Elbpegels während	
	des Untersuchungszeitraumes zum langjährigen Mittel	36
Abb. 11:	Ganglinie der Elbe am Pegel Lenzen während des Untersuchungszeitraumes	
	im Vergleich zum langjährigen Mittel	37
Abb. 12:	Ganglinie der Löcknitz am Pegel Lenzen während des Zeitraumes November	
	1997 bis Mai 1998	41
Abb. 13:	Verlauf ausgesuchter Parameter (I) in frischen schwebstoffbürtigen	
	Sedimenten (Spurenmetallgehalte in der Fraktion $< 20 \ \mu m$) am Pegel	
	Schnackenburg in den Jahren 1986 - 1998 (Daten: ARGE ELBE)	47
Abb. 14:	Verlauf ausgesuchter Parameter (II) in frischen schwebstoffbürtigen	
	Sedimenten (Spurenmetallgehalte in der Fraktion $< 20 \ \mu m$) am Pegel	
	Schnackenburg in den Jahren 1986 - 1998 (Daten: ARGE ELBE)	49
Abb. 15:	Abweichungen in den Monatsmittelwerten der Lufttemperatur des	
	Untersuchungszeitraumes zum langjährigen Mittel	55
Abb. 16:	Abweichungen der Monatsmittelwerte der Niederschlagssummen des	
	Untersuchungszeitraumes zum langjährigen Mittel	57
Abb. 17:	Monatliche Niederschlagssummen und potentielle Evapotranspiration der	
	Station Lenzen über den Untersuchungszeitraum	58
Abb. 18:	Darstellung des Untersuchungsraumes am Ende des 17. Jahrhunderts	
	(Grund 1699)	60
Abb. 19:	Schematischer Aufbau einer Saugkerzenanlage	73
Abb. 20:	Beziehung der Luft- bzw. Bodentemperatur zum Wassergehalt	83
Abb. 21:	Vergleich der Wassergehaltsganglinien ohne und mit Temperaturkorrektur in	
	einem gesättigten Horizont	84
Abb. 22:	Schematischer Aufbau einer Redox-Meßsonde nach SCHMIDT [1998]	88

Abb. 23:	Darstellung der Desorptions-, Adsorptions- und der Feld-pF-Kurve sowie der
	Feld-Medwerte der wasserspannung und des wassergenaltes am Beispiel
A1-1- 04.	des Standortes , <i>Elchwala</i>
A00. 24:	vergieich der potentiellen (Kw B_p) und der realen (Kw B_A)
	klimatischen Wasserbilanz mit dem Wassergehaltsruckgang am Standort
411 05	, Drei-Felder uber eine Austrocknungsperiode von funf Monaten
Abb. 25:	Schema der Beziehung der realen klimatischen Wasserbilanz (KWB_A) zur
	Wasservorratsanderung (WV)
Abb. 26:	Beziehung der realen klimatischen Wasserbilanz (KWB _A) zur Differenz des
	Wasservorrates (WV) an den sechs Teststandorten über einen
	Beobachtungszeitraum von 29 Monaten
Abb. 27:	Unterteilung des Bodenfeuchtezustandes 100
Abb. 28:	Bodenfeuchtedreieck - schematisch 101
Abb. 29:	Ubersicht über die zeitliche Entwicklung der bodenkundlichen Systematik
	und der bodenkundlichen Kartieranleitung 117
Abb. 30:	Zinkgehalte in Abhängigkeit vom organischen Kohlenstoffgehalt in Auen-
	böden der Mittelelbe (Strom-km 438 bis 476) 121
Abb. 31:	Beziehung zwischen Gesamtkohlenstoffgehalt und Tongehalt bei Unter-
	bodenhorizonten aus dem Bereich der Mittelelbe 123
Abb. 32:	Darstellung der Bodenartenverteilung nach Angaben der Bodenschätzung 140
Abb. 33:	Lage und Zuordnung der Flächen des Untersuchungsgebietes aus der
	Arbeitsreinkarte der MMK 144
Abb. 34:	Verteilung der Bohrungen des VEB MELIORATIONSBAU SCHWERIN sowie des
	Instituts für Bodenkunde im Untersuchungsgebiet (brandenburgischer Teil) . 151
Abb. 35:	Karte der Auenlehmmächtigkeit im Untersuchungsgebiet 152
Abb. 36:	Darstellung (Box-Plots) der Höhe der Geländeoberfläche der 14 Bodensub-
	typen des Untersuchungsgebietes in bezug zum Mittelwasserstand der Elbe 158
Abb. 37:	Oberkante des Go-Horizontes der 14 Bodensubtypen des Untersuchungs-
	gebietes in bezug zum Mittelwasserstand der Elbe 159
Abb. 38:	Oberkante des Gor-Horizontes der 14 Bodensubtypen des Untersuchungs-
	gebietes in bezug zum Mittelwasserstand der Elbe 160
Abb. 39:	Oberkante des Gr-Horizontes der 14 Bodensubtypen des Untersuchungs-
	gebietes in bezug zum Mittelwasserstand der Elbe 161
Abb. 40:	Lage und Größe der Testflächen sowie mögliche Verläufe der
	zurückversetzten Deichlinie
Abb. 41:	Luftbildausschnitt der Testfläche , Lütkenwisch · 165
Abb. 42:	Profilbild des Teststandortes , Lütkenwisch Hochfläche ' 167
Abb. 43:	Feststoffkennwerte des Teststandortes , Lütkenwisch Hochfläche' 169
Abb. 44:	Profilbild des Teststandortes , Lütkenwisch Rinne' 172

Abb. 45:	Feststoffkennwerte des Teststandortes , Lütkenwisch Rinne' 1	74
Abb. 46:	Luftbildausschnitt der Testfläche , <i>Elbholz</i> · 1	77
Abb. 47:	Profilbild des Teststandortes , <i>Elbholz</i> ·	78
Abb. 48:	Feststoffkennwerte des Teststandortes , <i>Elbholz</i> · 1	80
Abb. 49:	Luftbildausschnitt der Testfläche , Eichwald · 1	83
Abb. 50:	Profilbild eines nahe dem Teststandort, Eichwald' gelegenen Standortes 1	84
Abb. 51:	Feststoffkennwerte des Teststandortes , Eichwald '	86
Abb. 52:	Luftbildausschnitt der Testfläche , Drei-Felder' 1	89
Abb. 53:	Profilbild des Teststandortes , Drei-Felder ' 1	90
Abb. 54:	Feststoffkennwerte des Teststandortes , Drei-Felder' 1	93
Abb. 55:	Luftbildausschnitt der Testfläche , Oberholz ' 1	95
Abb. 56:	Profilbild des Teststandortes , Oberholz' 1	96
Abb. 57:	Feststoffkennwerte des Teststandortes, Oberholz'1	98
Abb. 58:	Summenkurven der Grundwasserstände an den sechs Teststandorten 2	.03
Abb. 59:	Darstellung des Elbwasser- und des Grundwasserstandes (AS) sowie	
	des modellierten Grundwasserstandes am Standort, DF' während eines	
	11-monatigen Beobachtungszeitraumes 2	.05
Abb. 60:	Vergleich der gemessenen mit den modellierten Grundwasserständen der	
	sechs Teststandorte	.06
Abb. 61:	Wassergehalts-Ganglinie am Standort, LP' (Meßtiefe 2) über einen Zeitraum	
	von 29 Monaten	.09
Abb. 62:	Darstellung der Wassergehalts-Tiefenverteilung am Standort, LP' in	
	Verbindung mit der Niederschlagsaufzeichnung und der Grundwassergang-	
	linie über einen Zeitraum von 29 Monaten 2	11
Abb. 63:	Sättigungstiefenprofil an den Standorten , EH', , LP' und , LS' über einen	
	Zeitraum von 29 Monaten 2	12
Abb. 64:	Sättigungstiefenprofil an den Standorten , EW', , DF' und , OH' über einen	
	Zeitraum von 29 Monaten 2	14
Abb. 65:	Wasservorrat an den Standorten, EH', , LP' und , LS' über den	
	Untersuchungszeitraum	16
Abb. 66:	Wasservorrat an den Standorten , EW' , , DF' und , OH' über den	
	Untersuchungszeitraum	17
Abb. 67:	Wassergehalts- und Wasserspannungsverlauf am Standort , LP (Meßtiefe 1)	
	über einen Zeitraum von 29 Monaten 2	20
Abb. 68:	Gegenüberstellung des Wasserspannungsverlaufes in einer Meßtiefe von	
	ca. 40 cm der außendeichs gelegenen Teststandorte (oberer Teil) zu den	
	binnendeichs befindlichen (unterer Teil) über einen Zeitraum	
	von 29 Monaten	21

Abb. 69:	Gegenüberstellung des Wasserspannungsverlaufes in einer Meßtiefe von	
	ca. 100 cm der außendeichs gelegenen Teststandorte (oberer Teil) zu den	
	binnendeichs befindlichen (unterer Teil) über einen Zeitraum von	
	29 Monaten	222
Abb. 70:	Darstellung der kontinuierlich aufgezeichneten Wasserspannung am Standort	
	<i>,EW</i> in der Zeit vom 10.02.1999 bis 24.02.1999	225
Abb. 71:	Tagesgang der Saugspannung am Standort, EW' (Meßtiefe 5: 125 cm GOF)	
	in der Zeit vom 01.10.1999 bis 13.10.1999	226
Abb. 72:	Konzeptionelle Darstellung der Ergebnisse im Bodenfeuchtedreieck	231
Abb. 73:	Bodenfeuchtedreiecke der Teststandorte für die Vegetationsperioden	
	1998 und 1999	232
Abb. 74:	Darstellung der Korrelation von Magnesium zu Calcium in Elbe	
	und Löcknitz	237
Abb. 75:	Ganglinie der Bodentemperatur am Standort, LP' über einen Zeitraum	
	von 23 Monaten	240
Abb. 76:	Temperaturdifferenz an den Teststandorten im Vergleich zum Mittelwert	
	(Tiefe 100 cm)	241
Abb. 77:	Gegenüberstellung der Beziehung von Sättigungsgrad und Redoxspannung	
	bei unterschiedlichen Gehalten an organischer Substanz (< 1 % und > 5 %)	245
Abb. 78:	Beziehung von Wassergehalt und Redoxspannung bei wechselnden Boden-	
	temperaturen in einem bindigen, organogenen Horizont über einen	
	Beobachtungszeitraum von 18 Monaten	247
Abb. 79:	Darstellung des Tiefenprofils von Sättigungsgrad und Redoxspannung am	
	Standort , LS ⁴ über den gesamten Untersuchungszeitraum	248
Abb. 80:	Redoxspannungstiefenprofil an den Standorten, EH', ,LP', und ,LS' über	
	den Untersuchungszeitraum	252
Abb. 81:	Redoxspannungstiefenprofil an den Standorten, EW', ,DF', und ,OH' über	
	den Untersuchungszeitraum	253
Abb. 82:	Darstellung der Texturunterschiede zwischen Außen- und Binnendeichs-	
	proben anhand des Körnungsdreiecks	255
Abb. 83:	Beziehung des Sandanteils zur relativen Höhe	256
Abb. 84:	Beziehung der Leitfähigkeit in Bodenproben zur relativen Höhe	258
Abb. 85:	Beziehung des organischen Kohlenstoffs zur relativen Höhe (nur Oberboden)	259
Abb. 86:	Darstellung der Carbonatkonzentration in der Bodenlösung (Medianwerte)	
	an den Teststandorten im Vergleich zu den Kohlenstoffvorräten (bezogen	
	auf 1 m ² und 0,5 m Bodentiefe)	260
Abb. 87:	Beziehung des organischen Kohlenstoffs zum Gesamt-Stickstoff in außen-	
	und binnendeichs gelegenen Böden	262

Abb. 88:	Darstellung der Stickstoffkonzentration in der Bodenlösung (Medianwerte)	
	an den Teststandorten im Vergleich zu den Stickstoffvorräten (bezogen auf	
	1 m ² und 0,5 m Bodentiefe)	264
Abb. 89:	Beziehung der Gesamt-Schwefelgehalte zum organischen Kohlenstoff in	
	außen- und binnendeichs gelegenen Böden	266
Abb. 90:	Darstellung der Sulfatkonzentration in der Bodenlösung (Medianwerte)	
	der Teststandorte im Vergleich zu den Schwefelvorräten (bezogen auf	
	1 m ² und 0,5 m Bodentiefe)	267
Abb. 91:	Beziehung des Phosphor-Gehaltes zum Gehalt an organischem Kohlenstoff	
	in außen- und binnendeichs gelegenen Böden	268
Abb. 92:	Beziehung des Gehaltes an pflanzenverfügbarem Phosphor zur relativen	
	Höhe (nur Oberbodenproben)	270
Abb. 93:	Beziehung von gelöstem Eisen zu Phosphat sowie oxalatlöslichem Eisen zu	
	Gesamt-Phosphor	271
Abb. 94:	Beziehung des Kaliumgehaltes zum Tongehalt in außen- und binnendeichs	
	gelegenen Böden	272
Abb. 95:	Darstellung der Kaliumkonzentration in der Bodenlösung (Medianwerte) an	
	den Teststandorten im Vergleich zu den austauschbaren Kaliumvorräten	
	(bezogen auf 1 m ² und 0,5 m Bodentiefe)	273
Abb. 96:	Beziehung der Calciumkonzentration zum Tongehalt in außen- und	
	binnendeichs gelegenen Böden	274
Abb. 97:	Darstellung der Calciumkonzentration in der Bodenlösung (Medianwerte)	
	an den Teststandorten im Vergleich zu den austauschbaren Calcium-	
	vorräten (bezogen auf 1 m ² und 0,5 m Bodentiefe)	276
Abb. 98:	Beziehung der Magnesiumkonzentration zum CorgGehalt in außen- und	
	binnendeichs gelegenen Böden	277
Abb. 99:	Darstellung der Magnesiumkonzentration in der Bodenlösung (Medianwerte)	
	an den Teststandorten im Vergleich zu den austauschbaren Magnesium-	
	vorräten (bezogen auf 1 m ² und 0,5 m Bodentiefe)	278
Abb. 100:	Vergleich der Ca/Mg-Verhältnisse in der Bodenlösung der Teststandorte	
	zu denen im Niederschlag (NS), der Elbe (EL) und Löcknitz (LZ)	280
Abb. 101:	Beziehung des primären Eisengehaltes zum Tongehalt in außen- und	
	binnendeichs gelegenen Böden	282
Abb. 102:	Beziehung des Gesamt-Eisengehaltes zum Tongehalt in außen- und	
	binnendeichs gelegenen Böden	283
Abb. 103:	Beziehung des Gesamt-Mangangehaltes zum Anteil an primärem Mangan	
	in außen- und binnendeichs gelegenen Böden	285
Abb. 104:	Beziehung der Eisen- und Mangankonzentrationen in der Bodenlösung	
	zur Redoxspannung (Standort , <i>LS</i> ')	286

Abb. 105:	Prozentualer Anteil von Chlorid, Sulfat und Hydrogencarbonat an der	288
Abb 106.	Darstellung der Chlorid-Konzentration in der Bodenlösung der	200
AUU. 100.	Teststandorte	289
Abb. 107:	Tiefenabhängiger Konzentrationsverlauf von Chlorid am Standort .LS'	202
110011071	während einer Überstauungsphase von Oktober - Dezember 1998	291
Abb. 108:	Beziehung von Arsen zum oxalatlöslichen Eisen in außen- und binnendeichs	_, _
	gelegenen Böden	297
Abb. 109:	Beziehung von Chrom zu Nickel in außen- und binnendeichs gelegenen	
	Böden	301
Abb. 110:	Beziehung von Zink zum organischen Kohlenstoff in außen- und	
	binnendeichs gelegenen Böden	303
Abb. 111:	Beziehung des Zinkgehaltes zum Tongehalt in außen- und binnendeichs	
	gelegenen Böden	304
Abb. 112:	Darstellung der Zinkkonzentration in der Bodenlösung (Medianwerte) an den	
	Teststandorten im Vergleich zum Zinkvorrat (bezogen auf 1 m ² und 0,5 m	
	Bodentiefe	305
Abb. 113:	Berechnete Wasserspiegelveränderungen der Elbe zwischen Strom-km 475	
	und 485 für zwei Rückdeichungsvarianten bei drei Abflußsituationen	317
Abb. 114:	Vergleich der monatlichen statistischen Kennwerte der Grundwasserstände am	
	Standort, EW' für den Ist-Zustand und die Rückdeichung (kleine Variante)	321
Abb. 115:	Gegenüberstellung des Wasserhaushalts während der Vegetationsperiode	
	am Standort, EH' im Ist-Zustand und nach Rückdeichung	325
Abb. 116:	Gegenüberstellung des Wasserhaushalts während der Vegetationsperiode	
	am Standort , LP' im Ist-Zustand und nach Rückdeichung	326
Abb. 117:	Gegenüberstellung des Wasserhaushalts während der Vegetationsperiode	
	am Standort , LS' im Ist-Zustand und nach Rückdeichung	327
Abb. 118:	Gegenüberstellung des Wasserhaushalts während der Vegetationsperiode	
	am Standort, EW' im Ist-Zustand und nach Rückdeichung	328
Abb. 119:	Gegenüberstellung des Wasserhaushalts während der Vegetationsperiode	
	am Standort , DF' im Ist-Zustand und nach Rückdeichung	329
Abb. 120:	Gegenüberstellung des Wasserhaushalts während der Vegetationsperiode	
	am Standort, OH' im Ist-Zustand und nach Rückdeichung	330

Abbildungen im Anhang:

Abb. A1:	Kornzusammensetzung der Elbesohle zwischen Strom-km 474,0 und 485,0
	(Daten: BfG [1989]) A1
Abb. A2:	Kornzusammensetzung der Buhnenfelder zwischen Strom-km 474,0 und
	485,0 (Daten: NEBELSIEK [2000]) A1
Abb. A3:	Abhängigkeit des Wasserspiegelgefälles von der Wasserspiegelhöhe am
	Pegel Lenzen A2
Abb. A4:	Monatliche Überflutungswahrscheinlichkeit am Pegel Lenzen
	(Reihe 1964 - 1997) A2
Abb. A5:	Schlüsselkurve der Elbe an den Strom-km 476, 480 und am Pegel Lenzen bei
	Strom-km 485 (Daten: BAW) A3
Abb. A6:	Verlauf ausgesuchter allgemeiner Parameter am Pegel Schnackenburg in den
	Jahren 1984 - 1998 (Daten: ARGE ELBE) A4
Abb. A7:	Verlauf ausgewählter Nährstoffe am Pegel Schnackenburg in den Jahren
	1984 - 1998 (Daten: ARGE ELBE)
Abb. A8:	Verlauf ausgewählter Spurenmetallgehalte im Elbwasser (unfiltrierte Probe)
	am Pegel Schnackenburg in den Jahren 1984 - 1998 (Daten: ARGE ELBE) A6
Abb. A9:	Lufttemperatur während des Untersuchungszeitraumes (Station Lenzen) A7
Abb. A10:	Beziehung der relativen Luftfeuchtigkeit zur Lufttemperatur während des
	Untersuchungszeitraumes (Tagesmittelwerte)
Abb. A11:	Vergleich der Wassergehaltsganglinien ohne und mit Temperaturkorrektur in
	einem ungesättigten Horizont A8
Abb. A12:	Ermittlung des Verdunstungsfaktors aus der Wasserspannung des Bodens
	und der potentiellen Evapotranspiration A8
Abb. A13:	Ermittlung der Feuchteverteilungsklassen (Q1 und Q3 = Quartilswerte,
	nach ZEPP [1995], verändert) A9
Abb. A14:	Histogramme der Boden-, Acker-, Grünlandgrund- und Grünlandzahlen
	der 281 ausgewerteten Flächen der Bodenschätzung aus dem
	Untersuchungsgebiet A10
Abb. A15:	Darstellung der auf den Mittelwasserstand des Pegels Lenzen normierten
	Grundwasserganglinien der außendeichs gelegenen Teststandorte über einen
	Beobachtungszeitraum von acht Monaten A11
Abb. A16:	Darstellung der auf den Mittelwasserstand des Pegels Lenzen normierten
	Grundwasserganglinien der binnendeichs gelegenen Teststandorte über einen
	Beobachtungszeitraum von acht Monaten A11
Abb. A17:	Darstellung des Elbwasserstandes sowie des Grundwasserstandes im
	Auensand und im Auenlehm am Standort, OH' über einen 10-monatigen
	Beobachtungszeitraum

Abb. A18:	Gegenüberstellung des Vorkommens charakteristischer Wasserspannungs-
	größen an den Standorten , LS' (oben) und , EH' (unten) in der Zeit von
	September 1997 bis November 1999 A13
Abb. A19:	Zeitlicher Verlauf der Leitfähigkeit in Elbe und Löcknitz während eines
	Zeitraumes von 18 Monaten A14
Abb. A20:	Zeitlicher Verlauf der Chloridkonzentration in Elbe und Löcknitz während
	eines Zeitraumes von 18 Monaten A14
Abb. A21:	Zeitlicher Verlauf der Hydrogencarbonatkonzentration in Elbe und Löcknitz
	während eines Zeitraumes von 18 Monaten A15
Abb. A22:	Zeitlicher Verlauf der Nitratkonzentration in Elbe und Löcknitz während
	eines Zeitraumes von 18 Monaten A15
Abb. A23:	Zeitlicher Verlauf der Natriumkonzentration in Elbe und Löcknitz
	während eines Zeitraumes von 18 Monaten A16
Abb. A24:	Zeitlicher Verlauf der Zinkkonzentration in Elbe und Löcknitz während
	eines Zeitraumes von 18 Monaten A16
Abb. A25:	Temperaturdifferenz an den Teststandorten im Vergleich zum Mittelwert
	(Tiefe 20 cm)
Abb. A26:	Räumliche Variabilität der Redoxspannung in einem 1 m² großen Meßfeld
	über einen Beobachtungszeitraum von 13 Monaten A18
Abb. A27:	Beziehung vom aktuellen pH-Wert zum potentiellen pH-Wert getrennt
	nach den Landschaftsräumen (außendeichs / binnendeichs) A18
Abb. A28:	Beziehung der Eisenkonzentration in der Bodenlösung zum
	Gesamt-Eisengehalt
Abb. A29:	Beziehung der Mangankonzentration in der Bodenlösung zum
	Gesamt-Mangangehalt A19
Abb. A30:	Vergleich der berechneten Wasserspiegelhöhen zwischen linearer Inter-
	polation und einem zweidimensionalen Modell entlang des Untersuchungs-
	gebietes bei drei Durchflußsituationen A20

13.3 Tabellen

Tab. 1:	Vergleich charakteristischer Daten von großen Flußgebieten Mitteleuropas [IKSE 1995a]
Tab. 2:	Schachtelmodell der unterschiedenen Untersuchungsebenen
Tab. 3:	Gewässerkundliche Hauptzahlen des Pegels Wittenberge [m ³ /s]
Tab. 4:	Hauptkenndaten der Jahreswitterung im , Drei-Felder-Versuch' für die Jahre
	1995 - 1997 (Daten: HENZE [1998])
Tab. 5:	Monatliche Niederschlagssummen während des Untersuchungszeitraumes
	(Station Lenzen)
Tab. 6:	Klimatische Wasserbilanz, aufgeteilt in hydrologischen Winter und Sommer
	der Jahre 1996 - 1999 (Station Lenzen)
Tab. 7:	Ausgewertete historische und aktuelle Bohrunterlagen aus dem
	Untersuchungsgebiet
Tab. 8:	Aufteilung der Ober- und Unterbodenproben in die Landschaftseinheiten
	Außendeichsbereich (AD) und Binnendeichsbereich (BD)
Tab. 9:	Bodenphysikalische Standard-Analyseverfahren für Feststoffproben
Tab. 10:	Bodenchemische Standard-Analyseverfahren für Feststoffproben
Tab. 11:	Standard-Analyseverfahren für Wasserproben I
Tab. 12:	Standard-Analyseverfahren für Wasserproben II
Tab. 13:	Apparative Ausstattung der Teststandorte , <i>Lütkenwisch Hochfläche (LP)</i> ,
	,Lütkenwisch Rinne (LS)', ,Elbholz (EH)', ,Oberholz (OH)',
	,Drei-Felder (DF)' und ,Eichwald (EW)' 104
Tab. 14:	Aufnahme und Beendigung der Felddatenerhebung sowie Anzahl der
	Messungen an den Teststandorten
Tab. 15:	Substratarten für die natürlichen Auenböden der Mittelelbe nach SYST 4 119
Tab. 16:	Kennzeichnung der Horizonte im Übergangsbereich von anhydromorph zu
	hydromorph 126
Tab. 17:	Kennzeichnung der hydromorphen Horizonte bei unterschiedlicher Intensität der
	Fleckung in der oxidativen Bodenzone 127
Tab. 18:	Bestimmung der Böden mit deutlicher Bodenbildung (Auswahl) 130
Tab. 19:	Klassifizierung der Auenböden mit initialer Bodenbildung
Tab. 20:	Prozentualer Anteil abschlämmbarer Teilchen bei den für Ackerflächen bzw.
	Grünland in der RBS ausgewiesenen Bodenarten nach SÜCHTING [1949] und
	SCHACHTSCHABEL et al. [1998] sowie Übertragung auf die im
	Untersuchungsgebiet nachgewiesenen Bodenarten gemäß KA 4 138
Tab. 21:	Bodenartenangaben der Bodenschätzung, deren Flächengröße und
	prozentualer Anteil am Untersuchungsgebiet

Tab. 22:	Angaben der Mittelmaßstäbigen landwirtschaftlichen Standortkartierung	
	(MMK) für das Untersuchungsgebiet	145
Tab. 23:	Bestimmung des Substrat- und Hydromorphiekontrastes einer	
	Kartierungseinheit	148
Tab. 24:	Flächen- und Gruppengröße der MMK-Einheiten des Untersuchungsgebietes	
	sowie deren Anteil an der Gesamtfläche	149
Tab. 25:	Auflistung der im Untersuchungsgebiet angesprochenen Bodensubtypen	153
Tab. 26:	Aufteilung der angesprochenen Bodensubtypen auf die fünf Testflächen bzw.	
	die übrigen Bereiche	156
Tab. 27:	Höhenlage hydromorpher Horizonte (n = 296)	162
Tab. 28:	Testflächencharakterisierung	163
Tab. 29:	Bodenkundliche Kennwerte des Teststandortes, Lütkenwisch	
	Hochfläche (LP)'	167
Tab. 30:	Bodenkundliche Kennwerte des Teststandortes , Lütkenwisch Rinne (LS)'	173
Tab. 31:	Bodenkundliche Kennwerte des Teststandortes , Elbholz (EH) '	179
Tab. 32:	Bodenkundliche Kennwerte des Teststandortes, Eichwald (EW) '	185
Tab. 33:	Bodenkundliche Kennwerte des Teststandortes , Drei-Felder (DF) ⁴	191
Tab. 34:	Bodenkundliche Kennwerte des Teststandortes, Oberholz (OH)'	197
Tab. 35:	Relative Höhe und mittlerer Grundwasserstand (Medianwert) der sechs	
	Teststandorte	201
Tab. 36:	Kennwerte der Grundwasserganglinien (bezogen auf den Mittelwasserstand der	r
	Elbe am Pegel Lenzen) an den sechs Teststandorten im Vergleich zur Elbe	202
Tab. 37:	Vorkommen charakteristischer Wasserspannungswerte (Prozent des	
	Untersuchungszeitraumes) an den Außendeichsstandorten , EH', , LP' und	
	, LS' während des Untersuchungszeitraumes	223
Tab. 38:	Vorkommen charakteristischer Wasserspannungswerte (Prozent des	
	Untersuchungszeitraumes) an den Binnendeichsstandorten , EW' , , DF'	
	und , OH' während des Untersuchungszeitraumes	224
Tab. 39:	Horizontbezogene Feuchteverteilungsklassen [nach ZEPP 1995] der Außen-	
	deichsstandorte, EH', 'LP' und , LS' während der Vegetationsperiode	
	(April - Oktober) der Jahre 1998 und 1999 sowie des	
	Gesamtuntersuchungszeitraumes	228
Tab. 40:	Horizontbezogene Feuchteverteilungsklassen [nach ZEPP 1995] der Binnen-	
	deichsstandorte, EW',, DF' und, OH' während der Vegetationsperiode	
	(April - Oktober) der Jahre 1998 und 1999 sowie des	
	Gesamtuntersuchungszeitraumes	229
Tab. 41:	Charakterisierung des Niederschlagwassers im Untersuchungsgebiet	238
Tab. 42:	Vorkommen charakteristischer Redoxspannungswerte (in Prozent des Unter-	
	suchungszeitraumes) an den Außendeichsstandorten , EH', , LP' und , LS'	250

Tab. 43:	Vorkommen charakteristischer Redoxspannungswerte (in Prozent des Unter-	
	suchungszeitraumes) an den Binnendeichsstandorten , EW , , DF , und , OH .	251
Tab. 44:	Gegenüberstellung normierter Elementkonzentrationen (Fraktion < 20 μ m)	
	von Oberbodenproben aus dem Außen- und Binnendeichsbereich des	
	Untersuchungsgebietes und der Pevestorfer Elbaue sowie von frischen	
	schwebstoffbürtigen Sedimenten (Schnackenburg Daten: ARGE ELBE)	306
Tab. 45:	Spurenmetallgehalte [mg/kg] in den Oberböden der Teststandorte sowie in	
	frischen Sedimenten der Jahre 1997 - 98 (Medianwert)	308
Tab. 46:	Vorsorgewerte für Böden (nach § 8 Abs. 2, Nr. 2 des Bundes-Bodenschutz-	
	gesetzes (in mg/kg Trockenmasse, Feinboden, Königswasseraufschluß))	309
Tab. 47:	Prüfwerte nach § 8 Abs. 1 Satz 2 Nr. 1 (BBodSchG) für die direkte	
	Aufnahme von Schadstoffen auf Kinderspielflächen, in Wohngebieten, Park-	
	und Freizeitanlagen sowie Industrie- und Gewerbegrundstücken (in mg/kg	
	Trockenmasse, Feinboden)	310
Tab. 48:	Maßnahmenwerte nach § 8 Abs. 1 Satz 2 Nr. 2 des Bundes-Bodenschutz-	
	gesetzes für den Schadstoffübergang Boden-Nutzpflanze auf Grünflächen	
	im Hinblick auf die Pflanzenqualität (in mg/kg TM, Feinboden, Arsen	
	und Schwermetalle im Königswasser-Extrakt Feinboden)	311
Tab. 49:	Prüfwerte nach § 8 Abs. 1 Satz 2 Nr. 1 (BBodSchG) für Böden unter	
	Ackerbau, Gartenbau und Grünland (Feinboden, angegeben als	
	Ammoniumnitrat-Extrakt [µg/kg Trockenmasse] (*1) oder als	
	Königswasser-Extrakt [mg/kg Trockenmasse] (*2))	311
Tab. 50:	Spurenelement-Grenzwerte für Pflanzengehalte sowie Tierfutter im Vergleich	
	zu Pflanzenproben aus dem Außendeichsbereich, gewonnen vor und nach	
	dem Sommerhochwasser 1997 (Vergleichsproben gewaschen)	312
Tab. 51:	Überflutungswahrscheinlichkeiten der Teststandorte und deren	
	Veränderungen nach Rückdeichung (kleine Variante)	318
Tab. 52:	Grundwasserstände und deren Veränderungen bei Rückdeichung an den binnen	1-
	deichs gelegenen Teststandorten	322
Tab. 53:	Geschätzte jährliche Nährstoffeinträge (incl. Kohlenstoff) durch	
	abgelagerte Hochflutsedimente	332
Tab. 54:	Durchschnittliche Spurenmetallgehalte in frischen Hochflutsedimenten der	
	Jahre 1997 - 1998 sowie deren geogener und anthropogener Anteil	335
Tab. 55:	Maximal zulässiger zusätzlicher jährlicher Schadstoffeintrag nach BBodSchG	
	(§ 8 Abs. 2 Nr. 2) sowie mit abgelagerten Hochflutsedimenten anthropogen	
	bedingte jährliche Spurenmetalleinträge	335

Tabellen im Anhang:

Tab. A1:	Durchschnittliche Wasserstände der Elbe am Pegel Lenzen (Monatswerte)
	während des Untersuchungszeitraumes
Tab. A2:	Allgemeine Parameter und Nährstoffe (Medianwerte) im Wasserkörper am
	Meßort Schnackenburg (Strom-km 474,5) in den Jahren 1984 - 1998
	(Daten: Arge Elbe) A21
Tab. A3:	Elementkonzentrationen (Medianwerte) ausgesuchter Schadstoffparameter
	im Wasserkörper (unfiltrierte Probe) am Meßort Schnackenburg (Strom-km
	474,5) in den Jahren 1984 - 1998 (Daten: ARGE ELBE) A22
Tab. A4:	Mediane Elementkonzentrationen frischer schwebstoffbürtiger Sedimente in
	der Fraktion $< 20 \mu\text{m}$ am Meßort Schnackenburg in den Jahren 1986 - 1998
	(Daten: ARGE ELBE)
Tab. A5:	Gegenüberstellung des Tongesteinstandards [TUREKIAN & WEDEPOHL 1961]
	mit den geogenen Hintergrundwerten des Elbestroms nach ARGE ELBE
	[1997] und PRANGE et al. [1997] sowie Schadstoffgehalte in frischen schweb-
	stoffbürtigen Sedimenten am Pegel Schnackenburg des Jahres 1998, ergänzt
	durch die Zielvorgabe (ZV), den Anreicherungsfaktor (AF) und die
	Güteklasse [ARGE ELBE 1997] A23
Tab. A6:	Monatsmittelwerte der Lufttemperaturen der DWD-Stationen Dömitz
	(1901 - 1950), Lüchow (1961 - 1990) und Lenzen (1994 - 1999) A24
Tab. A7:	Durchschnittliche monatliche Sonnenscheindauer in Stunden
	(Station Lüchow)
Tab. A8:	Häufigkeitsverteilung einzelner Windrichtungen und deren mittlere Stärke
	(Daten: DWD-Station Lenzen 1994 - 1999) A24
Tab. A9:	Monatssummen der Niederschläge der Vorläufer-Station Lenzen
	(1901 - 1950) [Daten: WETTERDIENST DER DDR 1955, 1961] A24
Tab. A10:	Durchschnittliche Verteilung von Niederschlagsereignissen über das Jahr
	(Station Lüchow)
Tab. A11:	Durchschnittliche Lufttemperatur (Monatswerte) während des
	Untersuchungszeitraumes (Station Lenzen) A25
Tab. A12:	Anzahl der Trockentage sowie unterschiedlich starker Regentage und deren
	Anteil am jeweiligen Beobachtungsjahr während des
	Untersuchungszeitraumes
Tab. A13:	Monatliche klimatische Wasserbilanz während des Untersuchungs-
	zeitraumes (Station Lenzen) A25
Tab. A14:	Van-Genuchten-Parameter der Teststandorte (M = 0,269 und L = 0,5000) A26
Tab. A14a:	Feld pF-WG-Kurve der Teststandorte (Tiefe 1 - 5) A27

Tab. A15:	HAUDE-Faktoren zur Berechnung der möglichen Verdunstung von Gras für
	mittlere Tageswerte (f_T) und für Monatssummen (f_M) nach DIN 19 685 A28
Tab. A16:	Kennzeichnung der Feuchteverteilungsklassen (nach ZEPP [1995], verändert) A28
Tab. A17:	Mittlere Summenkurve der im Untersuchungsgebiet festgestellten Bodenarten
	(BA, n=299), sortiert nach Tongehalt, ergänzt um die nach SÜCHTING [1949]
	bzw. SCHACHTSCHABEL et al. [1998] resultierende Bodenart der
	Bodenschätzung für Ackerflächen (RBS) A29
Tab. A18:	Grundwasserstand, der laut Modell und AS-Pegel an den Teststandorten an
	300 Tagen im Jahr mindestens erreicht wird sowie Oberkante des
	Gr-Horizontes und Berechnung der Unterschreitungsdauer laut Modell A30
Tab. A19:	Berechnungsknoten des Grundwassermodells (Ist-Zustand) sowie Distanz
	zum Teststandort und Höhenkorrektur A30
Tab. A20:	Berechnungsknoten des Grundwassermodells (kleine Rückdeichungs-
	variante) sowie Distanz zum Teststandort und Höhenkorrektur A30
Tab. A21:	Überstauungsdauer der Teststandorte während des Untersuchungszeitraumes
	- Real, sowie abgeleitet aus Elbwasserstand, Grundwassermodell und
	Pegelmessung A31
Tab. A22:	Chemische Kennwerte in Elbe und Löcknitz (aufgenommen in der Zeit vom
	März 1998 bis August 1999) A31
Tab. A23:	Lage der Grundwasserbrunnen und Charakterisierung des ersten
	Grundwasserleiters im Untersuchungsgebiet am 14 15.07.1998 A32
Tab. A24:	Bodentemperatur-Kennwerte für zwei Bodentiefen, getrennt nach
	Gesamtmeßzeitraum und Vegetationsperiode A33
Tab. A25:	Wärmeleitfähigkeit und Wärmekapazität ausgewählter
	Bodenbestandteile (nach SCHACHTSCHABEL et al. [1998]) A34
Tab. A26:	Effektive Kationenaustauschkapazität, getrennt nach den Landschafts-
	einheiten (außendeichs / binnendeichs) sowie Ober- und Unterboden und die
	prozentuale Zusammensetzung der austauschbaren Ionen A34
Tab. A27:	Parameter für die lineare Regression der Ca/Mg-Verhältnisse in der
	Bodenlösung an den Teststandorten im Verhältnis zum Niederschlag,
	der Elbe und Löcknitz A35
Tab. A28:	Chloridkonzentration am Standort, LS' während eines Überflutungs-
	ereignisses im Herbst 1998 A35
Tab. A29:	Spurenelement-Gehalte der Landschaftseinheiten (außen- und binnendeichs)
	getrennt für Ober- und Unterbodenproben A36
Tab. A30:	Spurenelement-Korrelationsmatrix für die Kompartimente außendeichs
	Ober- und Unterboden (AD-OB, AD-UB) sowie binnendeichs Ober- und
	Unterboden (BD-OB, BD-UB) A37

13.4 Fotos

Foto 1:	Zusammentreffen von Hoch- und Qualmwasser bei Werben A38
Foto 2:	Winterliches Hochwasser in Verbindung mit Eisgang
Foto 3:	Blick in das Elbtal von der Dömitzer Düne
Foto 4:	Das Elbtal bei Hitzacker
Foto 5:	Ertüchtigung des Altdeiches durch Auffüllung mit Sand A40
Foto 6:	Ertüchtigter Deich mit Radweg und Berme A40
Foto 7:	Teststandorte, LP' und, LS' während einer Niedrigwasserphase der Elbe A41
Foto 8:	Teststandorte, LP' und, LS' während einer Hochwasserphase der Elbe A41
Foto 9:	Einbau der Meßapparatur A42
Foto 10:	Darstellung der Meßapparatur am Teststandort , EW ⁴
Foto 11:	Elbaue im Amt Neuhaus A43
Foto 12:	Elbaue bei Falkenberg A43

13.5 Software

Adobe Photoshop	: Version 4.0, Adobe Systems Inc.
ArcView	: Version 3.1, Environmental System Research Institute, Inc.
dBase	: Version 5.0, Borland GmbH
Excel	: Version 97, Microsoft Corporation
ORIGIN	: Version 5.0, MicroCal Software Inc.
PolyPlot	: Version 5.2, Inst. f. Geographie d. Universität Hamburg
PowerPoint	: Version 97, Microsoft Corporation
QuattroPro	: Version 8, Corel Corporation Ltd.
RETC	: s. Literatur VAN GENUCHTEN et al. [1991]
WordPerfect	: Version 8, Corel Corporation Ltd.

Die folgenden Programme sind von Dr. Klaus Berger (1, 2) oder Dr. Alexander Gröngröft (3 - 5) am Institut für Bodenkunde der Universität Hamburg entwickelt worden.

1. KOERNUNG	: Methodenbank-Modul zur Berechnung der Korngrößenverteilung
2. PORUNG	: Methodenbank-Modul zur Berechnung der Porengrößenverteilung und
	bodenphysikalischen Kenndaten
3. LABOR	:Methodenbank-Modul zur Berechnung der Feststoff- und Lösungs- konzentration
4. AUEN-WH	: Methodenbank-Modul zur Berechnung der Bodenwasserhaus- haltsdaten
5. PROGNOSE-WH	:Methodenbank-Modul zur Berechnung der Bodenwasserhaushalts- Änderungen