

Untersuchung der Auswirkung von Maßnahmen im Elbevorland auf die Strömungssituation und die Flussmorphologie am Beispiel der Erosionsstrecke und der Rückdeichungsbereiche zwischen Wittenberge und Lenzen - Schlussbericht -

Inhaltsverzeichnis

		Seite
1	Zielstellung und Untersuchungsmethodik	1
2	Struktur des Forschungsprojektes, Veröffentlichungen und Berichte, Bearbeiter und Zusammenarbeit mit anderen Stellen	5
3	Voraussetzungen	9
3.1	Erosionsstrecke der Elbe	9
3.2	Deichrückverlegung bei Lenzen	10
3.3	Charakterisierung der zu untersuchenden Grundszenarien	12
4	Allgemeine Fragestellungen	14
4.1	Entwicklungsziele	14
4.2	Untersuchungsrelevante Durchflüsse	15
4.3	Vergleich von ausufernden Durchflüssen in unterschiedlichen Untersuchungsräumen	20
4.4	Alternative Formen der Ergebnisdarstellung	23
5	Eindimensionale Modelle am Beispiel der Feststofftransportmodelle der Erosionsstrecke der Elbe	27
5.1	Allgemeines	27
5.2	Modelltopografie	27
5.3	Hydrologische Daten	29
5.4	Morphologische Daten	30
5.4.1	Eigenschaften des Sohlenmaterials	30
5.4.2	Eintrag von Geschiebe- und Schwebstoffmengen	31
5.5	Modellkalibrierung	33
5.5.1	Hydraulische Kalibrierung	33
5.5.2	Sedimentologische Kalibrierung	34
5.6	Ausblick	40
6	Zweidimensionale Modelle	41
6.1	Modell in der Erosionsstrecke bei Klöden	41
6.1.1	Modellbeschreibung	41
6.1.2	Untersuchte Varianten	43
6.1.3	Ergebnisse	45
6.1.4	Schlussfolgerungen	48
6.2	Modell der Rückdeichung bei Lenzen	50
6.2.1	Modellbeschreibung	50
6.2.2	Untersuchte Varianten	52

6.2.3	Ergebnisse	53			
6.2.4	Zusammenfassung				
7	Aerodynamische Modelle				
7.1	Aerodynamische Modelle mit variabler Überhöhung	60			
7.2	Aerodynamisches Modell in der Erosionsstrecke bei Klöden	65			
7.3	Aerodynamisches Modell bei Lenzen	71			
8	Hydraulisches Modell bei Mockritz/Döbern	78			
8.1	Modellbeschreibung	78			
8.2	Varianten	79			
8.3	Ergebnisse	81			
8.4	Schlussfolgerungen	85			
9	Modellvergleiche	86			
9.1	Vergleich von Modellen im Bereich Klöden	87			
9.2	Vergleich von Modellen im Bereich der Rückdeichung Lenzen	91			
9.3	Vergleich von Modellen mit Vorlandrinnen und Deichrückverlegung	94			
10	Schlussfolgerungen aus den Untersuchungen im Forschungsprojekt	97			
10.1	Erosionsstrecke	97			
10.2	Deichrückverlegung				
10.3	Erfahrungen bei der interdisziplinären Zusammenarbeit und beim Einsatz verschiedener Modellarten	100			
11	Bibliografie	101			
12	Glossar (Endnoten)	106			

Abbildungsverzeichnis

Abb. 1.1:	Übersicht der Untersuchungsgebiete	2
Abb. 1.2:	Lage der kleinen und mittelgroßen Modelle in der Erosionsstrecke	4
Abb. 1.3:	Modelle mit mittelgroßem Untersuchungsbereich zur Rückdeichung Lenzen	5
Abb. 3.1:	Analyse der Sohleneintiefung an Hand von Geometriepeilungen und von auf Q_{GIW} Wasserspiegelfixierungen (Darstellung der Differenzen bezogen auf 1961-65 bzw. 1959)	normierten 9
Abb. 4.1:	Ermittlung des "bettbildenden Durchflusses" für Torgau (BfG, Außenstelle Berlin)	17
Abb. 4.2:	Ermittlung des "bettbildenden Durchflusses" für Wittenberg (BfG, Außenstelle Berlin)	18

Seite

Abb. 4.3:	Vergleich der Anteile der Vorländer am Gesamtdurchfluss im Querschnitt	20
Abb. 4.4:	Veränderung der Vorlandanteile am Gesamtdurchfluss zwischen 60er und 90er Jahren (El-km 163-197)	21
Abb. 4.5:	Veränderung der mittleren Durchflussanteile für El-km 163 bis 197 von Flussbett und Vorländern zwische 1960er und 1990er Jahren (60er Jahre = 100%)	en 22
Abb. 4.6:	Beispielhafte Darstellung des Strömungscharakters eines Gebietes: Summe der Teilflächen i Untersuchungsgebiet, die bei definierter Wassertiefe mit einer bestimmten Geschwindigkeit überströmt werden)	im) 23
Abb. 4.7:	Buhnenvarianten im Bereich des zweiseitigen Ausbaus, Elbe-km 162,0 bis 162,4	25
Abb. 4.8:	Veränderung der Oberflächengeschwindigkeit durch Buhnenabsenkung (Modell Mockritz-Döbern)	26
Abb. 4.9:	Häufigkeit der Geschwindigkeitsklassen bei ausgewählten Varianten des hydraulischen Modells Mockrit Döbern	z- 26
Abb. 5.1:	Im Modell angesetzte und aus Geschiebemessungen ermittelte geschiebeführende Sohlenbreiten	29
Abb. 5.2:	Ganglinien, bestehend aus täglichen Abflusswerten und aus über verschieden lange Zeiträume gemittelte Abflüssen	en 30
Abb. 5.3:	Im Modell verwendete charakteristische Kornverteilungen	31
Abb. 5.4:	Geschiebetransport-Abfluss-Beziehung an der Messstelle Mühlberg	32
Abb. 5.5:	Schwebstofftransport-Abfluss-Beziehung an der Messstelle Mühlberg	32
Abb. 5.6:	Im Modell vorgegebene abflussabhängige Kornverteilungskurven des eingetragenen Geschiebematerials	33
Abb. 5.7:	Differenz zwischen den zu verschiedenen Zeitpunkten fixierten und den für die 1960er-Flussbettgeometr berechneten Wasserspiegelhöhen	rie 34
Abb. 5.8:	Gleitende Schnitte der beobachteten und berechneteten Änderungen der mittleren Sohlenhöhe in d Erosionsstrecke der Elbe zwischen 1961 und 1993	er 38
Abb. 5.9:	Beobachtete und berechnete Wasserspiegeldifferenzen (um 130 m ³ /s)	39
Abb. 5.10:	Jährliche Frachten an Geschiebe, suspendiertem Sand und Feinschwebstoffen in der Erosionsstrecke der Elbe	39
Abb. 6.1:	Vergleich der Modellausdehnungen des 2D-HN- und des AD-Modells	43
Abb. 6.2:	Vergleich der Wasserspiegeldifferenzen in der Flussachse	47
Abb. 6.3:	Differenz der Strömungsgeschwindigkeiten bei Rückdeichung und Istzustand	48
Abb. 6.4:	Differenz der Strömungsgeschwindigkeiten im Flussschlauch bezogen auf den Istzustand	49
Abb. 6.5:	Untersuchte Linienführungen der Deichrückverlegung bei Lenzen	51
Abb. 6.6:	Modellnetz, Bewuchszonen und Rauheitsbereiche	52
Abb. 6.7:	Berechnete Geschwindigkeitsverteilung für HQ ₃₋₅ bei großer Rückdeichung	54
Abb. 6.8:	Fließgeschwindigkeiten im Bereich zwischen den bestehenden Deichen bei HQ_{3-5}	55
Abb. 6.9:	Anteil der Schlitze am Vorlandabfluss bei großer Rückdeichung	57
Abb. 6.10:	Wasserspiegel in Flussachse und Rückdeichungsbereich bei Variante 33	57
Abb. 6.11:	Flächenanteile der Geschwindigkeits- und Wassertiefenklassen im Rückdeichungsbereich bei mittler Rückdeichung, HQ_{3-5}	er 58
Abb. 6.12:	Uferlinien bei mittlerer Rückdeichung	59
Abb. 7.1:	Nebelfluidinjektion bei El-km 481,9 zur Strömungssichtbarmachung im Luftmodell	62

Abb. 7.2:	Vertikale Geschwindigkeitsverteilung in Natur und im Luftmodell	63
Abb. 7.3:	Querschnittsdarstellung bei variabler zusätzlicher Überhöhung	63
Abb. 7.4:	Blick auf das Luftmodell "Klöden"	65
Abb. 7.5:	Foto des Luftmodells "Erosionsstrecke" (Gipsoberfläche, ohne Farbanstrich)	67
Abb. 7.6:	Sichtbarmachung der Sohlstromlinien mit Anstrichverfahren für Variante 1A – Deichrückverlegung (oben) un Istzustand (unten)	nd 68
Abb. 7.7:	Linien gleicher Geschwindigkeiten für Variante 6 (Buhnenabsenkung) und Variante 5 (Buhnenabsenkung un kleine Uferabgrabung) sowie Nullzustand	nd 70
Abb. 7.8:	Vergleich Variante 3 (große Uferabgrabung) und Nullzustand	71
Abb. 7.9:	Luftmodell Lenzen mit eingeebneter Geschiebesohle	72
Abb. 7.10:	Geländemodell des Luftmodells Lenzen für den Nullzustand (aus Laserabstandsmessung)	73
Abb. 7.11:	Sohle des Geschiebekoffers nach dem Langzeitversuch für den Nullzustand	74
Abb. 7.12:	Sohle des Geschiebekoffers nach dem Versuch mit geschlitztem Deich	75
Abb. 7.13:	Sohle des Geschiebekoffers nach dem Versuch ohne Deich	75
Abb. 7.14:	Vergleich der mittleren Sohle im bereich der beweglichen Sohlenbreite im AD-Modell Lenzen	76
Abb. 7.15:	Vergleich der Entwicklung der mittleren Sohlen bezogen auf die Prognose für 15 Jahre im Nullzustand b feuchter Ganglinie	oei 77
Abb. 8.1:	Hydraulisches Modell mit eingebauten Flutrinnen	78
Abb. 8.2:	Grundriss des Modells mit Lage der Untersuchungsvarianten	79
Abb. 8.3:	Untersuchte Maßnahmen im Querschnitt	80
Abb. 8.4:	Ausschnitt der verzweigten Rinne des rechten Vorlandes	82
Abb. 8.5:	Isotachenpläne für Istzustand und Varianten mit Buhnenmodifikation	83
Abb. 8.6:	Vertikale Geschwindigkeitsverteilung bei $Q = 580 \text{ m}^{3/s}$	84
Abb. 9.1:	Vergleich der Wasserspiegel in der Flussachse bei Klöden	88
Abb. 9.2:	Vergleich von 2D- und AD-Modell	89
Abb. 9.3:	Fließgeschwindigkeiten für den Nullzustand aus 2D-HN-Modell bei 1800 m³/s	90
Abb. 9.4:	Wasserspiegeldifferenzen im Flussbett zwischen großer Deichvariante und Nullzustand aus langen 1D- und 21 HN-Modellen bei HQ ₂₀₋₂₅	D- 92
Abb. 9.5:	Anteile des rechten Vorlandes am Gesamtdurchfluss für El-km 481,9 im Vergleich verschiedener Modelle un Varianten	nd 93
Abb. 9.6:	Vergleich des ermittelten Wasserspiegelabsunks für verschiedene Modelle bei großer Rückdeichung	94

V

Tabellenverzeichnis

Seite

Tab. 1.1:	Im Forschungsprojekt eingesetzte Modellarten	3
Tab. 1.2:	Eingesetzte Modelle in den zwei Untersuchungsgebieten	4
Tab. 2.1:	Modelle für die Untersuchungen in der Erosionsstrecke der Elbe	6
Tab. 2.2:	Modelle für die Untersuchungen im Rückdeichungsbereich	6
Tab. 4.1:	Untersuchungsrelevante Durchflüsse	16
Tab. 4.2:	Durchfluss bei Geschiebebewegungsbeginn in den Untersuchungsräumen	19
Tab. 4.3:	Vergleich von Wasserspiegel und mittleren Geschwindigkeiten im Flussschlauch	22
Tab. 4.4:	Liste der jeweiligen Anteile an der Gesamtfläche (12,3 km ²), die bei definierter Fließtiefe mit bestimmte Geschwindigkeit überströmt werden	er 24
Tab. 6.1:	Durchflüsse am Bezugspegel Torgau	44
Tab. 6.2:	Durchfluss und Geschwindigkeit im Referenzprofil b (Abb. 6.3) bei El-km 190	45
Tab. 6.3:	Maximaler Wasserspiegelabsunk in der Flussachse	46
Tab. 6.4:	Durchfluss und Geschwindigkeit im Referenzprofil c) bei El-km 188,5	47
Tab. 6.5:	Parameter der untersuchten Rückdeichungsgebiete	50
Tab. 6.6:	Modellnetze	51
Tab. 6.7:	Anteile des Gesamtabflusses für das Rückdeichungsgebiet	54
Tab. 6.8:	Mittlere und maximale tiefengemittelte Geschwindigkeiten in den Schlitzen	56
Tab. 7.1:	Vergleich von aerodynamischem und hydraulischem Modell	61
Tab. 7.2:	Besonderheiten aerodynamischer Modelle im Vergleich mit hydraulischen Modellen	61
Tab. 7.3:	Parameter der im Forschungsprojekt eingesetzten Luftmodelle	64
Tab. 8.1:	Im hydraulischen Modell untersuchte Durchflüsse	79
Tab. 9.1:	Nutzung verschiedener Modellarten bei Klöden	87
Tab. 9.2:	Tabellarischer Vergleich der mittelgroßen Modelle mit Rückdeichung	96
Tab. 9.3:	Tabellarischer Vergleich der mittelgroßen Modelle mit Vorlandrinnen	97

9 Modellvergleiche

Die verschiedenen Modellarten wurden neben der fachlichen Bewertung der untersuchten Varianten auch genutzt, um die Aussagen bei Modellen unterschiedlicher Auflösung und Abstraktionsgrade zu vergleichen. Dies erfolgte mit dem Ziel, zukünftig eine größere Sicherheit bei der Wahl der geeigneten Modellmethoden (so genau wie nötig bei geringstem Aufwand) zu erlangen und die Kopplungsmöglichkeiten der Modelle sicher zu stellen. Einige Ergebnisse dieser Vergleiche werden an dieser Stelle beispielhaft vorgestellt.

9.1 Vergleich von Modellen im Bereich Klöden

	Eindimensional-hydronumerisches Modell	Zweidimensional-hydronumerisches Modell	Aerodynamisches Modell
Untersuchte Maß-	alle	Große Uferabgrabung, Altarmanbindung mittels	Kleine Deichrückverlegung, große und kleine
nahmen		Flutrinne, große Deichrückverlegung	Uferabgrabung, Buhnenmodifikation und Kom-
			bination von Buhnenmodifikation und kleiner
			Uferabgrabung
Abstraktionen	Berechnung von über Breite und Tiefe gemittelten	Berechnung von über die Tiefe gemittelten	Gegenständliches dreidimensionales Modell
	Parametern,	Paramətərn mit Angabə dər horizontalən	(Kontinuums-Analogiemcdell),
	Geschwindigkeiten wurden senkrecht zum Profil	Richtungsvektoren,	Messung der Parameter im Raum,
	errechnet (keine Quergeschwindigkeiten),	Buhnen wurden nicht in der Geometrie sondern	Umrechnung der Modellmessdaten in Natur-
	Schwach durchströmte Bereiche mit stark von der	über Rauheitsparameter berücksichtigt, weil	werte über Ähnlichkeitsgesetze.
	Hauptströmung abweichender Richtung wurden	nur Hochwasserabflüsse untersucht wurden.	Aus Platzersparnis wurde der Vorlandbereich
	im Modell ausgeschlossen,	C Aufwand für Modellerstellung und Rechnung	des Altarmes, über dem nur ein geringer
	Querbauwerke (z.B. Buhnen) wurden als Schat-	ist höher, je feiner das Modellnetz gewählt	Durchflussanteil abgeführt wird, nicht mit mo-
	ten in den beeinflussten Querprofilen berücksich-	wird und in größer das Untersuchungsgebiet	delliert.
	tigt	iet	Mit vertretbarem Aufwand können nur wenige
			Durchflüsse untersucht werden.
Vorteil	Aufwand für Modellerstellung und Rechnung ge-		Parameter können im Raum mit Größe und
	ring,	Vergleich vieler Verienten aut realigierhar	Richtung gemessen werden.
	Lange Strecken und das gesamte Durchfluss-	vergielch vieler varianten gut realisierbai	
	spektrum können berechnet werden.		
Problem bei allen	Keine Geschwindigkeitsmessungen bei Hochwasse	er vorhanden, deshalb kann die Durchflussverteilu	ing Vorland-Fluss nicht kalibriert werden.
Modellen			
Speziell untersuchte	Reichweite und Größenordnung der Auswirkun-	Tiefengemittelte Parameter der Strömung in	Vertikale Geschwindigkeitsverteilung,
Fragen, die mit ande-	gen der Maßnahmen nach Oberstrom,	weiten Vor ändern nach Betrag und Richtung.	relativ kleine Veränderungen z.B. an Buhnen.
ren Modellen nicht	Untersuchung beliebiger Durchflüsse.		
betrachtet wurden			
konnten			

Tab. 9.1: Nutzung verschiedener Modellarten bei Klöden

Der Vergleich verschiedener Modellmethoden zeigte, dass trotz unterschiedlicher Abstrationsgrade die Prognosen vergleichbarer Parameter ausreichend nah beieinander lagen (siehe Abb. 9.1). Somit konnten die Ergebnisse zu Teilfragestellungen, die mit verschiedenen Modellen erhalten wurden, gemeinsam bewertet werden. Als Beispiel soll auf die Untersuchung der Uferabgrabungen in 1D-, 2D- und AD-Modellen (siehe einige Erläuterungen in Kap. 7.2) verwiesen werden.

Differenz der Wasserspiegel (in der Flussachse) bei 1800 bzw. 2400 m∛s verschiedene Varianten bezogen auf den Nullzustand

Abb. 9.1: Vergleich der Wasserspiegel in der Flussachse bei Klöden

Für die Variante 3 (große Uferabgrabung) wurde ein Vergleich der sohlennahen Strömung im aerodynamischen Modell (unterlegtes Foto in Abb. 9.2) mit den Stromlinien (tiefengemittelt) aus dem zweidimensionalen Modell vorgenommen. Deutliche Unterschiede traten linksseitig unterhalb km 190,265 auf. Auf Grund der nur geringen Geschwindigkeiten in diesen Bereichen wirkte sich der Verzicht auf die exakte Modellierung dieser großen Vorlandgebiete im AD-Modell bei der Untersuchung von Maßnahmen im Flussbett oder im Ufernahbereich jedoch nicht negativ aus.

Abb. 9.2: Vergleich von 2D- und AD-Modell

Ein ähnlicher Vergleich wurde für das ein- und das zweidimensionale Modell durchgeführt. In Abb. 9.3 wurden die Begrenzungen des 1D-Modells (linkes Vorland im Altarmbereich im AD-Modell nicht modelliert) in das Gebiet des 2D-HN-Modells eingezeichnet. Die von diesen Linien ausgehenden Vektoren stellen den Strömungsanteil im 2D-Modell senkrecht zu der 1D-Begrenzung dar. An Hand der Stromlinien und Vektoren ist gut zu erkennen, dass die Vorlandbereiche hinter der 1D-Begrenzung keine Stillwassergebiete sind, sondern gering durchströmt werden und somit mehr oder weniger ab-flussrelevant sein können. Um den Abfluss über die 1D-Begrenzungen zu quantifizieren, wurde längs (von Oberstrom nach Unterstrom) der 1D-Begrenzungen der dazu senkrechte Durchflussanteil aufsummiert, wobei der Abfluss aus dem 1D-Gebiet heraus als negativ und in das 1D-Gebiet hinein als positiv betrachtet wurde.

Abb. 9.3: Fließgeschwindigkeiten für den Nullzustand aus 2D-HN-Modell bei 1800 m³/s

Die Auswertungen [BAW, 2001a] für HQ₅ (Abb. 9.3) zeigen, dass zwischen El-km 189,5 und 192,5 bis zu 300 m^3 /s im linken Vorland außerhalb des 1D-Gebietes abfließen. Zwischen El-km 190,5 und

193,5 fließen bis zu 170 m³/s im rechten Vorland außerhalb des 1D-Gebietes ab. Vergleicht man im Flussabschnitt El-km 189,5 bis 193,5 die Durchflussmenge, die im 2D-Modell zwischen den Begrenzungslinien abgeführt wird, mit der Menge zwischen den Begrenzungen des 1D-HN-Modells (=Gesamtdurchfluss), ist festzustellen, dass sie im 2D-Modell lokal um bis zu 380 m³/s (ca. 20 % des Gesamtabflusses) geringer ist.

Allerdings stimmten die Durchflussanteile der Vorländer am Gesamtdurchfluss jeweils annähernd überein, so dass die großräumigen Prognosen des eindimensionalen Modells sich gut in die Ergebnisse der zweidimensionalen und aerodynamischen Untersuchungen einordneten. Da mit den eindimensionalen Modellen Mittelwerte für Querschnittsanteile (Vorländer links und rechts, Gewässerbett) errechnet werden, muss bei der Abstraktion von schwach durchströmten Gebieten lediglich sicher gestellt werden, dass naturähnliche Durchflussanteile gewährleistet werden. Dazu bedarf es Naturmessungen als Grundlage für die Modellkalibrierung, die im vorliegenden Fall auf Grund des weiten Vorlandes und der selten auftretenden Überströmung der Vorländer (Geschwindigkeitsmessungen sind erst gut auswertbar bei Wassertiefen über dem Vorland von ca. 1 m) nicht zur Verfügung standen. In den vorliegenden Untersuchungen traten wegen für alle Modelle fehlenden Naturmessungen lokal Abweichungen zwischen den Modellen auf, die auf die fehlenden Kalibriermöglichkeiten zurückzuführen sind. Für die Kalibrierung aller Modelle war von Nachteil, dass für Hochwasserereignisse keine Angaben über die Durchflussverteilung (Vorland, Gewässerbett) bzw. über die Fließgeschwindigkeiten vorlagen. Die absoluten Größen der Parameter (z.B. Wasserspiegelhöhe) sind deshalb besonders bei Hochwasserdurchflüssen unsicher (Dezimeterbereich), Differenzen von Nullzustand und Variante (Prognose) können jedoch mit ausreichender Genauigkeit ermittelt werden (mehrere Zentimeter).

9.2 Vergleich von Modellen im Bereich der Rückdeichung Lenzen

Im Bereich der Rückdeichung Lenzen wurden mehrere Modellarten eingesetzt (s. Tab. 2.2). Die verschiedenen Modelle waren erforderlich, da sie auf Grund der unterschiedlichen Abstraktionsgrade zur Beantwortung abweichender Fragestellungen geeignet sind. Im Rahmen der Untersuchungen wurden die Parameter verglichen, für die in allen Modellen Ergebnisse erzielt wurden. Die Bezeichnung der Deichrückverlegungen (A-C) bezieht sich auf Abb. 1.3 (siehe auch [BAW, 1998c]).

Die Untersuchungen begannen im Rahmen der Vorleistungen mit einem stationären eindimensionalen hydronumerischen (1D-HN) Modell mit fester Sohle im Nahbereich der Deichrückverlegung bei Lenzen (Rückverlegung A bei km 471,5-485). Da sich in den Untersuchungen zeigte, dass die Maßnahmewirkungen am oberstromigen Modellrand nicht abgeklungen waren und auch zusätzlich weitere Deichrückverlegungen (B und C) untersucht werden sollten, wurde das Modell bis km 438 und bis km 495 verlängert. Die Deichrückverlegungen wurden mit Sensitivitätsbetrachtungen (verschiedenen Annahmen zu durchströmten Bereichen und Rauheiten) für das gesamte Durchflussspektrum untersucht. Das lange 1D-HN-Modell diente sowohl als Grundlage für ein eindimensionales Feststofftransportmodell als auch für ein Wellenablaufmodell, so dass zwei weitere Phänomene berücksichtigt werden konnten. Das aerodynamische Modell (km 474,2-484,1) ermöglichte räumliche Untersuchungen im Bereich der Rückdeichung Lenzen für HQ₂₋₃. Mit diesem Modell wurde die Strömungsausbreitung im neuen Vorland untersucht und die Vorauswahl für die Gestaltung des verbleibenden Altdeiches vorgenommen. Die Güte der ursprünglich für die 1D-HN-Modelle getroffenen Annahmen zu nicht durchströmten Bereichen konnte mit dem aerodynamischen Modell als ausreichend bestätigt werden.

Bis zu diesem Stadium standen Probleme des Hochwasserschutzes, der langfristigen Entwicklung der mittleren Sohlenhöhen, der hydraulisch erforderlichen Strömungsführung und der zu erwartenden Größe der mittleren abiotischen Parameter im neuen Vorland (Wassertiefe, Geschwindigkeit, Strömungsrichtung) im Vordergrund. Mit dem stationären zweidimensionalen (2D-HN) Modell mit fester Sohle wurde der verbleibende Altdeich unter Berücksichtigung der Durchflüsse HQ₁, HQ₂₋₃ und HQ₂₀₋₂₅ optimiert.

Soweit basierten alle Untersuchungen auf der gleichen Datengrundlage und betrachteten die große Deichvariante (s. [BAW, 1998c] bzw. [BAW, 1999a]). Im 2D-HN-Modell wurden dann aktuelle topografische Daten für das zukünftige Vorland und eine mittlere Deichvariante für weitere Untersuchungen mit verstärkter Ausrichtung auf aus ökologischen Gründen benötigten Daten (auch Flutungsverhalten im instationären Betrieb) berücksichtigt (s. Kap. 6.1.1).

Veränderungen der Wasserspiegelhöhen durch die Deichrückverlegung

Am Beispiel der Veränderung der Wasserspiegel und der Durchflussanteile wird ein Einblick in den Vergleich der verschiedenen Modellarten gegeben (s. auch [BAW, 1998c]):

Abb. 9.4: Wasserspiegeldifferenzen im Flussbett zwischen großer Deichvariante und Nullzustand aus langen 1D- und 2D-HN-Modellen bei HQ₂₀₋₂₅

Obwohl in Abb. 9.4 die Ergebnisse verschiedener Modelle verglichen werden, ordnen sich die entsprechenden Darstellungen gut im Diagramm ein. Mit den 1D-Modellen wurden die ersten, abschätzenden Untersuchungen als Grenzwertbetrachtung durchgeführt, da diese Modelle wegen der geringeren Modellauflösung längere Untersuchungsabschnitte abdecken können. Die vergleichende Betrachtung der Durchflussanteile (s. Abb. 9.5) und der Schlüsselkurven weist größere Unterschiede besonders im Bereich der gerade ausufernden Durchflüsse auf. In diesem Durchflussbereich unterscheiden sich die verschiedenen Modellarten am stärksten in ihren Abstraktionsgraden und damit in der detaillierten Strömungsabbildung.

Abb. 9.5: Anteile des rechten Vorlandes am Gesamtdurchfluss für El-km 481,9 im Vergleich verschiedener Modelle und Varianten

Durch die Deichrückverlegung kommt es zum Wasserspiegelabsunk gegenüber dem Nullzustand, der für verschiedene Deichlinien und Bewuchszustände im zukünftigen Vorland quantifiziert wurde. Dazu mussten in den verschiedenen Modellarten Annahmen zur künftigen Vorlandrauheit getroffen werden. Trotz der unterschiedlichen Abstraktionsgrade der Modellarten und der Unsicherheit in der Rauheitsprognose wurden ähnliche Absunkwerte erhalten (Abb. 9.6).

Abb. 9.6: Vergleich des ermittelten Wasserspiegelabsunks für verschiedene Modelle bei großer Rückdeichung

Das zweidimensionale hydronumerische und das aerodynamische Modell ergänzten sich auch bei der Untersuchung der Ausbildung des heutigen Deiches zur künstlichen Uferrehne. Mit dem zweidimensionalen Modell wurden für drei signifikante Durchflüsse flächig die tiefengemittelten Fließgeschwindigkeiten, Wasserstände und -tiefen errechnet, wobei sich besonders effektiv Differenzen darstellen ließen. Im Luftmodell konnten an ausgewählten Messlotrechten die vertikalen Geschwindigkeitsverteilungen gemessen werden, so dass z.B. im Bereich der starken Krümmung im Einlaufabschnitt der Rückdeichung lokale Strömungsverhältnisse quantifiziert werden konnten.

9.3 Vergleich von Modellen mit Vorlandrinnen und Deichrückverlegung

	2D-HN Modell	2D-HN-Modell		
	Klöden	Lenzen		
Ausdehnung Elbe-km	182 - 194	475,0-485,5		
Geometrie allgemein				
Mittleres Sohlgefälle	0,25‰	0,13‰		
Breite zwischen den Deichen (Nul	lzustand)			
Maximal	ca. 3000	ca. 1300 m		
Minimal	ca. 600	ca. 470 m		
Im Mittel		600 m		
Fließlänge	12 km	10,5 km		
Hydraulik allgemein				
ab welchem Abfluss / Jährlich- keit wird der Rückdeichungsbe-	Keine instationäre Rechnung: bei 1220 m ³ /s (MHQ) im Null-	Beginn der Füllung durch		

	2D-HN Modell			2D-HN-Modell				
		Klö	den		Lenzen			
reich eingestaut bzw. überströmt	zustand - Einstau von Unter-			Rückstau: Q=820 m ³ /s				
	strom				(t _ü ³ : 100 Tage)			
	bei 12	220 m³/s	chrück-	Beginn Überströmung:				
	verlegung Uberströmung				Q=1130 m ³ /s			
	rer Durchflussanteil als im			(t _Ü : 44 Tage)				
	Nullzu	istand	samen					
entlang der Linie der größten	MHO	₂₀ : 1,25 b	is 2,1 m/	S	HO ₁₋₂ : 0.9 bis 1.4 m/s			
Geschwindigkeiten im Haupt-	$HO_{5 V0}$: 1.2 bis 2.3 m/s				$HO_{2} = 0.8 \text{ bis } 1.6 \text{ m/s}$			
strom	HQ_{50}		s 2,5 m/s	5	HQ ₂₀₋₂₅ : (0,9 bis	1,7 m/s	
Kenndaten der Rückdeichung	200 1	0 /			(20 20	,		
Maßnahmenbereich Elbe-km		185 - 190),3, recht	s	477,	,5 bis 4	-83,0, re	chts
Fließlänge		5,3	km			5,5	km	
maximale Breite der rückge- deichten Fläche		145	0 m			120	00 m	
mittlere Breite der rückgedeich- ten Fläche		46	0m		760			
Fläche Rückdeichungsgebiet	290 ha			420 ha				
Art des Zuflusses (ungehindert oder durch Schlitze oder)	Deich vollständig entfernt			Schlitze und Flutmulden				
Strömungshindernisse im Rück- deichungsbereich (Sommerdeich o.ä.)	keine			Fährdamm				
Änderungen durch Rückdeichun	g							
- im Hauptstrom								
Δv_{mittel} Hauptstrom (Lenzen)	MHQ : -0,29 bis 0,09 m/s			HQ ₁₋₂ : -0,05 bis 0,05 m/s				
Δv_{Talweg} Hauptstrom (Klöden)	HQ_5 :	-0,58 bis	0,36 m/s		HQ ₃₋₅ : -0,35 bis 0,15 m/s			
$(\Delta v = v_{R"uckdeichungszustand} - v_{Nullzustand})$	HQ ₅₀ : 1,32 bis 2,5 m/s				HQ ₂₀₋₂₅ : -0,55 bis 0,15 m/s			
max. ΔWsp im Hauptstrom	MHQ	: -0,17 m			HQ ₁₋₂ : -0	,10 m		
$(\Delta W s p = W s p_{R uck deichung szustand})$	HQ ₅ : -0,44 m			HQ ₃₋₅ : -0,30 m				
Wsp _{Nullzustand})	HQ ₅₀ : -0,65 m			HQ ₂₀₋₂₅ : -0,40 m				
- im Rückdeichungsbereich								
		Q rück	Q ges	%		Q rück	Q ges	%
Abtlussanteil, der über den Bückdeichungsbereich abgeführt	MHO	[m³/s] 218	[m³/s]	19	HOLD	[m³/s]	[m³/s] 1500	9
wird (Maximum)	HQ ₅	646	1727	37	HQ ₃₋₅	633	2300	28
	HQ ₅₀	1386	2824	45	HQ ₂₀₋₂₅	1171	3250	36
	MHQ: 0 bis 0,71 m/s				HQ ₁₋₂ : 0	bis 0,4	m/s	
v Rückdeichungsbereich	HQ ₅ : 0 bis 0,83 m/s				HQ ₃₋₅ : 0 bis 0,5 m/s			
	HQ ₅₀ : 0 bis 1,3 m/s				HQ ₂₀₋₂₅ : 0 bis 0,6 m/s			
mittlere Wassertiefe und Schwankungsbereich im Rück- deichungsbereich in m	MHQ	0,94	0,3	- 1,3	HQ ₁₋₂	0,9	4	0 - 2,2

³ Anzahl der Tage, an denen dieser Abfluss in einem durchschnittlichen Jahr überschritten wird

	2D-HN Modell			2D-HN-Modell		
	Klöden			Lenzen		
	HQ ₅ 1,47 0,8 - 1,8			HQ ₃₋₅	1,94	0,8 - 3,3
	HQ ₅₀	2,16	1,6 - 2,6	HQ ₂₀₋₂₅	2,94	1,8-4,3
- nach oberstrom (im Hauptstro	m)					
Δv 2,5 km oberhalb der Maß-	erhalb der Maß- MHQ: 0,023			HQ ₁₋₂ : <0,05		
nahme $(\Delta v = v_{R\"uckdeichungszustand} - $	HQ5:0,036			HQ ₃₋₅ : <0,05		
v _{Nullzustand}) [m/s]	HQ ₅₀ : 0,034			HQ ₂₀₋₂₅ : <0,1		
Δ Wsp 2,5 km oberhalb der Maß-	MHQ: -0,12 m			HQ ₁₋₂ : -0,08 m		
nahme $(\Delta Wsp=Wsp_{Rückdeichungs})$	HQ _{5 :} -0,216 m			HQ ₃₋₅ : -0,23 m		
$_{zustand}$ -Wsp _{Nullzustand})	Nullzustand) HQ_{50} : -0,31 m			HQ ₂₀₋₂₅ : ·	-0,33 m	

Tab. 9.2: Tabellarischer Vergleich der mittelgroßen Modelle mit Rückdeichung

	2D-HN Modell	Hydraulisches Modell				
	Klöden	Mockritz-Döbern				
Ausdehnung Elbe-km	182 - 194	160,2 - 164,0				
Geometrie allgemein						
Mittleres Sohlgefälle	0,25‰	0,2‰				
Streichlinienabstand	100 m	100 m				
Breite zwischen den Deichen						
Maximal	ca. 3000	900 m				
Minimal	ca. 600	700 m				
Im Mittel		800 m				
Krümmungsradien	500 m (min)	800 - 960 m				
Fließlänge	12 km	3,80 km				
Hydraulik allgemein						
Charakteristik des Vergleichsab-		1 m unter gerade				
fluss $Q = 1220 \text{ m}^3/\text{s}$	Gerade ausufernd	ausufernd				
v _m Hauptstrom	2,07	1,6 m/s				
Abfluss Vorland	4 %	0 %				
Anspringen der Rinne bei	570 m³/s, MW + 1m	580 m³/s, MW + 1m				
Geometrie der Rinne						
	Ab km 188,2 in Altarm über-					
Maßnahmenbereich Elbe-km	gehend	162,40 - 163,60				
Fließlänge	2380 m	1050 m				
Gefälle	?	0,2 ‰				

	2D-HN Modell	Hydraulisches Modell			
	Klöden	Mockritz-Döbern			
Abflussfläche bei $Q = 1220 \text{ m}^3/\text{s}$	246 m²	55 m²			
Sohlbreite	70 m	5 m			
Böschungsneigung	1:3	1:3			
Vergleichsquerschnitt Elbe-km	190,0 (Engstelle)	163,1			
Änderungen durch Rinne im Maßnahmenbereich					
Abfluss in der Rinne	172 m³/s	59 m³/s			
Abflussanteil	14 %	5 %			
ΔQ Hauptstrom	10,4 %	?			
v _m Rinne	1,89 m/s	1,1 m/s			
Δv_m Hauptstrom	-0,18	?			
	-0,12 m in Engstelle				
Δ WSP im Hauptstrom	- 0,17 m (max bei km 188,2)				

 Tab. 9.3:
 Tabellarischer Vergleich der mittelgroßen Modelle mit Vorlandrinnen