

Untersuchung der Auswirkung von Maßnahmen im Elbevorland auf die Strömungssituation und die Flussmorphologie am Beispiel der Erosionsstrecke und der Rückdeichungsbereiche zwischen Wittenberge und Lenzen - Schlussbericht -

Inhaltsverzeichnis

		Seite
1	Zielstellung und Untersuchungsmethodik	1
2	Struktur des Forschungsprojektes, Veröffentlichungen und Berichte, Bearbeiter und Zusammenarbeit mit anderen Stellen	5
3	Voraussetzungen	9
3.1	Erosionsstrecke der Elbe	9
3.2	Deichrückverlegung bei Lenzen	10
3.3	Charakterisierung der zu untersuchenden Grundszenarien	12
4	Allgemeine Fragestellungen	14
4.1	Entwicklungsziele	14
4.2	Untersuchungsrelevante Durchflüsse	15
4.3	Vergleich von ausufernden Durchflüssen in unterschiedlichen Untersuchungsräumen	20
4.4	Alternative Formen der Ergebnisdarstellung	23
5	Eindimensionale Modelle am Beispiel der Feststofftransportmodelle der Erosionsstrecke der Elbe	27
5.1	Allgemeines	27
5.2	Modelltopografie	27
5.3	Hydrologische Daten	29
5.4	Morphologische Daten	30
5.4.1	Eigenschaften des Sohlenmaterials	30
5.4.2	Eintrag von Geschiebe- und Schwebstoffmengen	31
5.5	Modellkalibrierung	33
5.5.1	Hydraulische Kalibrierung	33
5.5.2	Sedimentologische Kalibrierung	34
5.6	Ausblick	40
6	Zweidimensionale Modelle	41
6.1	Modell in der Erosionsstrecke bei Klöden	41
6.1.1	Modellbeschreibung	41
6.1.2	Untersuchte Varianten	43
6.1.3	Ergebnisse	45
6.1.4	Schlussfolgerungen	48
6.2	Modell der Rückdeichung bei Lenzen	50
6.2.1	Modellbeschreibung	50
6.2.2	Untersuchte Varianten	52

6.2.3	Ergebnisse	53					
6.2.4	Zusammenfassung						
7	Aerodynamische Modelle						
7.1	Aerodynamische Modelle mit variabler Überhöhung	60					
7.2	Aerodynamisches Modell in der Erosionsstrecke bei Klöden	65					
7.3	Aerodynamisches Modell bei Lenzen	71					
8	Hydraulisches Modell bei Mockritz/Döbern	78					
8.1	Modellbeschreibung	78					
8.2	Varianten	79					
8.3	Ergebnisse	81					
8.4	Schlussfolgerungen	85					
9	Modellvergleiche	86					
9.1	Vergleich von Modellen im Bereich Klöden	87					
9.2	Vergleich von Modellen im Bereich der Rückdeichung Lenzen	91					
9.3	Vergleich von Modellen mit Vorlandrinnen und Deichrückverlegung	94					
10	Schlussfolgerungen aus den Untersuchungen im Forschungsprojekt	97					
10.1	Erosionsstrecke	97					
10.2	Deichrückverlegung	99					
10.3	Erfahrungen bei der interdisziplinären Zusammenarbeit und beim Einsatz verschiedener Modellarten	100					
11	Bibliografie	101					
12	Glossar (Endnoten)	106					

Abbildungsverzeichnis

Abb. 1.1:	Übersicht der Untersuchungsgebiete	2					
Abb. 1.2:	Lage der kleinen und mittelgroßen Modelle in der Erosionsstrecke						
Abb. 1.3:	Modelle mit mittelgroßem Untersuchungsbereich zur Rückdeichung Lenzen						
Abb. 3.1:	Analyse der Sohleneintiefung an Hand von Geometriepeilungen und von auf Q_{GIW} Wasserspiegelfixierungen (Darstellung der Differenzen bezogen auf 1961-65 bzw. 1959)	normierten 9					
Abb. 4.1:	Ermittlung des "bettbildenden Durchflusses" für Torgau (BfG, Außenstelle Berlin)	17					
Abb. 4.2:	Ermittlung des "bettbildenden Durchflusses" für Wittenberg (BfG, Außenstelle Berlin)	18					

Seite

Abb. 4.3:	Vergleich der Anteile der Vorländer am Gesamtdurchfluss im Querschnitt	20
Abb. 4.4:	Veränderung der Vorlandanteile am Gesamtdurchfluss zwischen 60er und 90er Jahren (El-km 163-197)	21
Abb. 4.5:	Veränderung der mittleren Durchflussanteile für El-km 163 bis 197 von Flussbett und Vorländern zwische 1960er und 1990er Jahren (60er Jahre = 100%)	en 22
Abb. 4.6:	Beispielhafte Darstellung des Strömungscharakters eines Gebietes: Summe der Teilflächen i Untersuchungsgebiet, die bei definierter Wassertiefe mit einer bestimmten Geschwindigkeit überströmt werden)	im) 23
Abb. 4.7:	Buhnenvarianten im Bereich des zweiseitigen Ausbaus, Elbe-km 162,0 bis 162,4	25
Abb. 4.8:	Veränderung der Oberflächengeschwindigkeit durch Buhnenabsenkung (Modell Mockritz-Döbern)	26
Abb. 4.9:	Häufigkeit der Geschwindigkeitsklassen bei ausgewählten Varianten des hydraulischen Modells Mockrit Döbern	z- 26
Abb. 5.1:	Im Modell angesetzte und aus Geschiebemessungen ermittelte geschiebeführende Sohlenbreiten	29
Abb. 5.2:	Ganglinien, bestehend aus täglichen Abflusswerten und aus über verschieden lange Zeiträume gemittelte Abflüssen	en 30
Abb. 5.3:	Im Modell verwendete charakteristische Kornverteilungen	31
Abb. 5.4:	Geschiebetransport-Abfluss-Beziehung an der Messstelle Mühlberg	32
Abb. 5.5:	Schwebstofftransport-Abfluss-Beziehung an der Messstelle Mühlberg	32
Abb. 5.6:	Im Modell vorgegebene abflussabhängige Kornverteilungskurven des eingetragenen Geschiebematerials	33
Abb. 5.7:	Differenz zwischen den zu verschiedenen Zeitpunkten fixierten und den für die 1960er-Flussbettgeometr berechneten Wasserspiegelhöhen	rie 34
Abb. 5.8:	Gleitende Schnitte der beobachteten und berechneteten Änderungen der mittleren Sohlenhöhe in d Erosionsstrecke der Elbe zwischen 1961 und 1993	er 38
Abb. 5.9:	Beobachtete und berechnete Wasserspiegeldifferenzen (um 130 m ³ /s)	39
Abb. 5.10:	Jährliche Frachten an Geschiebe, suspendiertem Sand und Feinschwebstoffen in der Erosionsstrecke der Elbe	39
Abb. 6.1:	Vergleich der Modellausdehnungen des 2D-HN- und des AD-Modells	43
Abb. 6.2:	Vergleich der Wasserspiegeldifferenzen in der Flussachse	47
Abb. 6.3:	Differenz der Strömungsgeschwindigkeiten bei Rückdeichung und Istzustand	48
Abb. 6.4:	Differenz der Strömungsgeschwindigkeiten im Flussschlauch bezogen auf den Istzustand	49
Abb. 6.5:	Untersuchte Linienführungen der Deichrückverlegung bei Lenzen	51
Abb. 6.6:	Modellnetz, Bewuchszonen und Rauheitsbereiche	52
Abb. 6.7:	Berechnete Geschwindigkeitsverteilung für HQ ₃₋₅ bei großer Rückdeichung	54
Abb. 6.8:	Fließgeschwindigkeiten im Bereich zwischen den bestehenden Deichen bei HQ_{3-5}	55
Abb. 6.9:	Anteil der Schlitze am Vorlandabfluss bei großer Rückdeichung	57
Abb. 6.10:	Wasserspiegel in Flussachse und Rückdeichungsbereich bei Variante 33	57
Abb. 6.11:	Flächenanteile der Geschwindigkeits- und Wassertiefenklassen im Rückdeichungsbereich bei mittler Rückdeichung, HQ_{3-5}	er 58
Abb. 6.12:	Uferlinien bei mittlerer Rückdeichung	59
Abb. 7.1:	Nebelfluidinjektion bei El-km 481,9 zur Strömungssichtbarmachung im Luftmodell	62

Abb. 7.2:	Vertikale Geschwindigkeitsverteilung in Natur und im Luftmodell	63
Abb. 7.3:	Querschnittsdarstellung bei variabler zusätzlicher Überhöhung	63
Abb. 7.4:	Blick auf das Luftmodell "Klöden"	65
Abb. 7.5:	Foto des Luftmodells "Erosionsstrecke" (Gipsoberfläche, ohne Farbanstrich)	67
Abb. 7.6:	Sichtbarmachung der Sohlstromlinien mit Anstrichverfahren für Variante 1A – Deichrückverlegung (oben) un Istzustand (unten)	nd 68
Abb. 7.7:	Linien gleicher Geschwindigkeiten für Variante 6 (Buhnenabsenkung) und Variante 5 (Buhnenabsenkung un kleine Uferabgrabung) sowie Nullzustand	nd 70
Abb. 7.8:	Vergleich Variante 3 (große Uferabgrabung) und Nullzustand	71
Abb. 7.9:	Luftmodell Lenzen mit eingeebneter Geschiebesohle	72
Abb. 7.10:	Geländemodell des Luftmodells Lenzen für den Nullzustand (aus Laserabstandsmessung)	73
Abb. 7.11:	Sohle des Geschiebekoffers nach dem Langzeitversuch für den Nullzustand	74
Abb. 7.12:	Sohle des Geschiebekoffers nach dem Versuch mit geschlitztem Deich	75
Abb. 7.13:	Sohle des Geschiebekoffers nach dem Versuch ohne Deich	75
Abb. 7.14:	Vergleich der mittleren Sohle im bereich der beweglichen Sohlenbreite im AD-Modell Lenzen	76
Abb. 7.15:	Vergleich der Entwicklung der mittleren Sohlen bezogen auf die Prognose für 15 Jahre im Nullzustand b feuchter Ganglinie	oei 77
Abb. 8.1:	Hydraulisches Modell mit eingebauten Flutrinnen	78
Abb. 8.2:	Grundriss des Modells mit Lage der Untersuchungsvarianten	79
Abb. 8.3:	Untersuchte Maßnahmen im Querschnitt	80
Abb. 8.4:	Ausschnitt der verzweigten Rinne des rechten Vorlandes	82
Abb. 8.5:	Isotachenpläne für Istzustand und Varianten mit Buhnenmodifikation	83
Abb. 8.6:	Vertikale Geschwindigkeitsverteilung bei $Q = 580 \text{ m}^{3/s}$	84
Abb. 9.1:	Vergleich der Wasserspiegel in der Flussachse bei Klöden	88
Abb. 9.2:	Vergleich von 2D- und AD-Modell	89
Abb. 9.3:	Fließgeschwindigkeiten für den Nullzustand aus 2D-HN-Modell bei 1800 m³/s	90
Abb. 9.4:	Wasserspiegeldifferenzen im Flussbett zwischen großer Deichvariante und Nullzustand aus langen 1D- und 21 HN-Modellen bei HQ ₂₀₋₂₅	D- 92
Abb. 9.5:	Anteile des rechten Vorlandes am Gesamtdurchfluss für El-km 481,9 im Vergleich verschiedener Modelle un Varianten	nd 93
Abb. 9.6:	Vergleich des ermittelten Wasserspiegelabsunks für verschiedene Modelle bei großer Rückdeichung	94

V

Tabellenverzeichnis

Seite

Tab. 1.1:	Im Forschungsprojekt eingesetzte Modellarten	3
Tab. 1.2:	Eingesetzte Modelle in den zwei Untersuchungsgebieten	4
Tab. 2.1:	Modelle für die Untersuchungen in der Erosionsstrecke der Elbe	6
Tab. 2.2:	Modelle für die Untersuchungen im Rückdeichungsbereich	6
Tab. 4.1:	Untersuchungsrelevante Durchflüsse	16
Tab. 4.2:	Durchfluss bei Geschiebebewegungsbeginn in den Untersuchungsräumen	19
Tab. 4.3:	Vergleich von Wasserspiegel und mittleren Geschwindigkeiten im Flussschlauch	22
Tab. 4.4:	Liste der jeweiligen Anteile an der Gesamtfläche (12,3 km ²), die bei definierter Fließtiefe mit bestimmte Geschwindigkeit überströmt werden	er 24
Tab. 6.1:	Durchflüsse am Bezugspegel Torgau	44
Tab. 6.2:	Durchfluss und Geschwindigkeit im Referenzprofil b (Abb. 6.3) bei El-km 190	45
Tab. 6.3:	Maximaler Wasserspiegelabsunk in der Flussachse	46
Tab. 6.4:	Durchfluss und Geschwindigkeit im Referenzprofil c) bei El-km 188,5	47
Tab. 6.5:	Parameter der untersuchten Rückdeichungsgebiete	50
Tab. 6.6:	Modellnetze	51
Tab. 6.7:	Anteile des Gesamtabflusses für das Rückdeichungsgebiet	54
Tab. 6.8:	Mittlere und maximale tiefengemittelte Geschwindigkeiten in den Schlitzen	56
Tab. 7.1:	Vergleich von aerodynamischem und hydraulischem Modell	61
Tab. 7.2:	Besonderheiten aerodynamischer Modelle im Vergleich mit hydraulischen Modellen	61
Tab. 7.3:	Parameter der im Forschungsprojekt eingesetzten Luftmodelle	64
Tab. 8.1:	Im hydraulischen Modell untersuchte Durchflüsse	79
Tab. 9.1:	Nutzung verschiedener Modellarten bei Klöden	87
Tab. 9.2:	Tabellarischer Vergleich der mittelgroßen Modelle mit Rückdeichung	96
Tab. 9.3:	Tabellarischer Vergleich der mittelgroßen Modelle mit Vorlandrinnen	97

6 Zweidimensionale Modelle

6.1 Modell in der Erosionsstrecke bei Klöden

6.1.1 Modellbeschreibung

Für die Untersuchungen verschiedener Vorlandmaßnahmen innerhalb der "Erosionsstrecke" mit Hilfe eines zweidimensionalen hydraulisch-numerischen (2D-HN) Modells wurde ein Elbe - Abschnitt bei Klöden (El-km 182 – 194, ausgewertet zwischen El-km 184 und 192) ausgewählt. Das Untersuchungsgebiet war durch folgende für die Erosionsstrecke typische Merkmale gekennzeichnet:

- abschnittsweise nah am Mittelwasserbett verlaufende Hochwasserdeiche,
- abschnittsweise weite Vorländer, einen Elbe Altarm,

- Uferrehnen (meist überwachsene Sedimentationen oder Aufschüttungen am Ufer),
- aktuell durch die erfolgte Sohleneintiefung zu hoch liegende Mittelwasserbauwerke,
- eine scharfe Krümmung (Radius 500 m) mit starker Kolkbildung bei km 190,
- bei etwa HQ₂ einsetzende Überflutung der Vorländer,
- ein Sohlmaterial (d_m ca. 10 mm, U etwa 15 %), das abschnittsweise zu erheblichen Anteilen bereits bei mittleren Durchflüssen mobilisiert wird.

Bei den Untersuchungen, die die grundsätzliche Wirkung von Vorlandmaßnahmen in der Erosionsstrecke und keine optimierte Variante für den gewählten Elbeabschnitt liefern sollten, wurden folgende Entwicklungsziele als Bewertungsmaßstab der Varianteneignung zu Grunde gelegt:

- Die Vorländer sollten häufiger als bisher durch Hochwasserabflüsse überflutet werden, wobei eine stärkere Durchströmung (z.B. des Altarmes) angestrebt wurde.
- Im Flussschlauch sollte die Strömungsbelastung verringert werden (Eindämmung der Sohlenerosion).
- Die Schifffahrtsbedingungen und die gefahrlose Hochwasserabfuhr mussten gewährleistet werden.

Es wurde ein 2D-HN-Modell ohne Berücksichtigung der Sohlenreaktion ("feste Sohle") eingesetzt, das ein Finite - Volumen - Verfahren nutzte. Mit dem 2D-HN-Modell wurden für jedes Kontrollvolumen des aus Viereckselementen aufgebauten numerischen Gitternetzes der Vektor der über die Wassertiefe integrierten horizontalen Geschwindigkeitskomponenten, der Wasserstand sowie die Turbulenzparameter berechnet. Zur Diskretisierung des Strömungsgebiets wurde ein krummliniges strukturiertes Berechnungsgitter mit ca. 127 800 Elementen generiert (Zelle mit kleinster bzw. größter Fläche: 9,8 m x 1 m bzw. 126 m x 49 m). Auf den Einbau von Buhnen wurde verzichtet; sie fanden in der Strömungsberechnung in Form von lokal erhöhten Rauheitswerten Berücksichtigung. Diese Abstraktion konnte gewählt werden, da mit dem 2D-HN-Modell ausschließlich Maßnahmen in den Vorländern und nur stationäre Hochwasserabflüsse untersucht wurden. Begleitend wurde ein aerodynamisches (AD) Modell im Bereich El-km 187 bis 191 zur Untersuchung von Maßnahmen im Flussschlauch und deren Kombination mit Vorlandvarianten betrieben (siehe Abb. 6.1). Zur Ermittlung der langfristigen und großräumigen Veränderungen der Wasserspiegel und der mittleren Sohle kam zusätzlich ein eindimensionales hydronumerisches (1D-HN) Modell zwischen El-km 163 und 197 zum Einsatz.

Abb. 6.1: Vergleich der Modellausdehnungen des 2D-HN- und des AD-Modells

6.1.2 Untersuchte Varianten

Das 2D-HN-Modell wurde für das Durchflussspektrum von etwa langjährigem mittleren Niedrigwasser (MNQ) bis langjährigem mittleren Hochwasser (MHQ) kalibriert. Für höhere Durchflüsse standen zum Zeitpunkt des Modellaufbaus nur ältere Fixierungen zur Verfügung. Die Untersuchungen erfolgten für stationäre Strömung bei drei Durchflüssen:

Bezeichnung	Jahresreihe	Durchfluss der Jahresreihe	untersuchter Durchfluss
		[m ³ /s]	[m³/s]
MHQ	1969/98	1210	1220
HQ ₅	1936/95	1800	1800
HQ ₅₀	1936/95	2940	3000

Tab. 6.1: Durchflüsse am Bezugspegel Torgau

Bei El-km 190, wo sich ein Krümmungskolk ausgebildet hat, liegt die Schlüsselstelle des Untersuchungsgebietes. In dieser Krümmung befindet sich im Istzustand (V0) eine hochwasserrelevante Engstelle, die linksseitig durch das hohe Vorland und rechtsseitig durch den sich wieder an den Flussschlauch annähernden Hochwasserdeich geprägt wird (Abb. 6.1). Zwischen km 189 und 190 befindet sich eine Strecke mit starkem Wasserspiegelgefälle (45 cm/km gegenüber dem Streckenmittel von etwa 22 cm/km). Charakteristisch für das Untersuchungsgebiet sind die ufernah erhöhten Vorlandbereiche (Uferrehnen), welche eine Barriere zwischen den dahinter liegenden Vorländern und dem Flussschlauch bilden. Dies führt dazu, dass bei MHQ Bereiche der Vorländer von Unterstrom aufgefüllt, aber nicht durchströmt werden. Ab fünfjährlichem Hochwasser HQ₅ erfolgt die Einströmung in die Vorländer weitestgehend von Oberstrom. Untersucht wurden folgende Varianten:

- linksseitiger Anschluss eines Elbe Altarmes mit Hilfe einer Flutrinne,
- linksseitige Uferabgrabungen im Bereich der starken Krümmung (Abtragen von Uferrehnen),
- rechtsseitige Deichrückverlegung entsprechend eines Vorschlages des Staatlichen Amtes für Umweltschutz Dessau/Wittenberg [StAU DESSAU, 1994].

Da es sich um Untersuchungen zur grundsätzlichen Wirkung und nicht um optimierte Ausführungsplanungen handelte, wurden eine sehr große Flutrinne und Uferabgrabung als Varianten betrachtet.

Altarmanbindung mittels einer Flutrinne (VF)

Um das linksseitige Vorland im Bereich von Bösewig stärker und früher zu überfluten und gleichzeitig das Hauptgerinne im Bereich Klöden (El-km 189 bis 192) zu entlasten, wurde der Altarm von Oberstrom durch eine Flutrinne angeschlossen, die einen (die Einströmung von Oberhalb verhindernden) Höhenriegel durchstieß (Abb. 6.1). Da die Schutzwirkung des Leitdeiches bei El-km 188 bei hohen Durchflüssen erhalten bleiben sollte, umging die Flutrinne den Leitdeich. Die Flutrinne hatte ihren Einlauf bei El-km 188,2 und mündete nach 2380 m in den Altarm. Sie wurde für die Grundsatzuntersuchungen als Trapezgerinne mit einer Sohlbreite von ca. 70 m und einer Böschungsneigung von 1:3 gestaltet. Die Sohle der Flutrinne lag in Höhe von etwa MW+1 m; der zugehörige Durchfluss von ca. 570 m³/s wird im Mittel an ca. 60 Tagen im Jahr überschritten. Die Abgrabtiefe des Vorlandes betrug im Mittel 1,3 m und maximal 2,15 m.

Uferabgrabung (VU)

Um die Auswirkungen einer Uferabgrabung auf die Strömung im Hauptgerinne und über den Vorländern zu untersuchen, wurde im Modell eine 2200 m lange und 130 bis 300 m breite Uferabgrabung am linken Ufer im Bereich der größten Strömungsbelastung (El-km 189 bis El-km 190) ausgeführt (Abb. 6.1). Da eine Aufweitung des Querschnittes wegen der Gewährleistung der Schifffahrtsbedingungen erst ab Durchflüssen deutlich über mittlerem Durchfluss erwünscht war, wurde der linksseitige Höhenrücken im ufernahen Bereich zwischen El-km 188,5 und El-km 190,7 auf das Niveau MW+1m abgegraben. Die mittlere Abgrabtiefe betrug 1,69 m (maximal 2,7 m).

Deichrückverlegung (VR)

Die rechtsseitige Deichrückverlegung wurde für die Grundsatzstudie in der Art ausgeführt, dass der bestehende Deich zwischen El-km 185 und 190,3 vollständig entfernt wurde. Die maximale Breite des neuen Vorlandes betrug 1450 m, die mittlere Breite 460 m, die neu gewonnene Überflutungsfläche ca. 250 ha.

6.1.3 Ergebnisse

Altarmanbindung mittels einer Flutrinne (VF)

Unterhalb des Flutrinneneinlaufes wurde die Strömungsgeschwindigkeit im Hauptgerinne (Tab. 6.2) deutlich verringert (um im Mittel 10 %, bis um 0,25 m/s) und damit der Angriff auf die Sohle. Allerdings führte die Anbindung zu einem Wasserspiegelverfall (Tab. 6.3), der sich Oberstrom der Maßnahme fortsetzte (Abb. 6.2). Dies bedingte dort einen stärkeren Sohlenangiff (Erhöhung der Geschwindigkeit im Flussschlauch um bis zu 0,15 m/s). Ein Ausgleich des Starkgefälles zwischen km 189 und 190 wurde bei allen untersuchten Durchflüssen erreicht. Die Veränderungen gegenüber dem Nullzustand waren im Flussschlauch bei HQ₅ am größten. Im Altarm stiegen Strömungsgeschwindigkeit und Wasserspiegel (+23 cm) bei MHQ am deutlichsten an.

Bereich	Durchflussanteil [%]			Maximale	Geschwin	digkeit im
	bezogen auf Gesamtabfluss			Hau	ptgerinne [m/s]
	MHQ	HQ ₅	HQ ₅₀	MHQ	HQ ₅	HQ ₅₀
Hauptgerinne V0	96	81	62	2,09	2,31	2,35
Hauptgerinne VF	86	75	56	1,90	2,07	2,14
Hauptgerinne VU	87	71	53	1,87	1,95	2,04
Hauptgerinne VR	96	75	51	2,08	2,14	2,02

Tab. 6.2:	Durchfluss und	Geschwindigkeit im	Referenzprofil b	(Abb. 6.3) bei El-km 190
-----------	----------------	--------------------	------------------	--------------------------

Uferabgrabung (VU)

Durch die weit ins linke Vorland hinein reichende Abgrabung wurde das Durchflussprofil im Bereich der engen Krümmung bei km 190 stark aufgeweitet, wodurch ein Durchflussanteil von 10 bis 15 % im neu geschaffenen Querschnitt über der Abgrabung abgeführt werden konnte. Im Maßnahmebereich kam es im Flussschlauch zu einer deutlichen Verringerung von Gefälle und Geschwindigkeit (bis um 0,36 m/s, siehe auch Tab. 6.2). Durch den nach Oberstrom sich auswirkenden Wasserspiegelabsunk (Tab. 6.3 und Abb. 6.2) trat dort eine erhöhte Fließgeschwindigkeit im Flussschlauch auf (bis um 0,1 m/s). Bei km 190 bis 190,6 wurde bei den hohen Durchflüssen der Zustrom ins linke Vorland vergrößert.

Variante	Maximale Wasser	Ort der maximalen		
	sachse gegenüb	Veränderung [km]		
	MHQ			
Flutrinne VF	-17	-19	-13	188,2
Uferabgrabung VU	-7	-18	12	188,5
Rückdeichung VR	-17	-44	-65	185

Tab. 6.3: Maximaler Wasserspiegelabsunk in der Flussachse

Deichrückverlegung (VR)

Die Wirkung der Deichrückverlegung nahm mit steigendem Durchfluss zu, der neue Deichlinienverlauf bekam erst bei deutlicher Vorlandüberströmung ab HQ5 eine prägende Wirkung. Durch das Altgewässer "Klödener Riß" und die Ortslage Klöden konnte der Deich nicht unterhalb von km 190,3 zurück verlegt werden, so dass die Engstelle modifiziert bestehen blieb. Die Untersuchungen zeigten, dass das Wasser bereits bei km 190 aus dem neuen, rechten Vorland in den Flussschlauch wieder zurückströmte. Die Wirkung der Deichrückverlegung war bei MHQ relativ gering, da bei diesem Durchfluss die Ausuferung gerade erst beginnt. Trotzdem wurden bei km 188,5 schon bei MHQ statt einem Durchflussanteil von 90 %, wie im Istzustand, nur 74 % im Flussschlauch abgeführt (Tab. 6.4). Allerdings kam es am oberen Ende der Deichrückverlegung (km 185) zu einem extremen Wasserspiegelabsunk (Tab. 6.3 und Abb. 6.2), der bis zum oberstromigen Rand des 2D-Untersuchungsgebiets noch nicht abgeklungen war und bei Durchflüssen ab HQ5 zur Erhöhung der Fließgeschwindigkeit um bis zu 36 % $(0,5 \text{ m/s} \text{ bei } HQ_{50})$ führte. Die maximale Wasserspiegelabsenkung zeigte sich am Beginn der Rückdeichung bei km 185. Im Bereich der Rückdeichung nahm der Durchflussanteil im Flussschlauch (Tab. 6.4) und damit die Strömungsgeschwindigkeit stark ab (bis um 0,85 m/s bei HQ₅₀). Da sich die Engstelle bei El-km 190 nahe beim Ende der Rückdeichung befindet, fielen hier jedoch die Auswirkungen relativ gering aus (Tab. 6.2).

Abb. 6.2: Vergleich der Wasserspiegeldifferenzen in der Flussachse

Über dem rechten Vorland im Bereich der Rückdeichung kam es bei allen Durchflüssen zu einer deutlichen Erhöhung der Strömungsgeschwindigkeit (Abb. 6.3), wobei dort der Wasserspiegel bei MHQ anstieg und bei HQ₅₀ leicht verfiel. Auf dem linken Vorland sanken Wasserspiegel und Strömungsgeschwindigkeit bei allen Durchflüssen.

Bereich	Durchflussanteil [%] bezogen auf den Gesamtabfluss			Maximal Hav	e Geschwind uptgerinne [n	ligkeit im n/s]
	MHQ HQ ₅ HQ ₅₀			MHQ	HQ ₅	HQ ₅₀
Hauptgerinne V0	90	76	59	1,65	1,71	2,00
Hauptgerinne VR	74	54	39	1,37	1,24	1,37

Tab. 6.4:	Durchfluss und	Geschwindigkeit i	m Referenzpro	ofil c) bei El-km	188,5
			1	/	

6.1.4 Schlussfolgerungen

Erosionsminderung:

Eine Verringerung der Strömungsgeschwindigkeit im Flussschlauch, und damit der Sohlenbelastung, konnte bei den drei Varianten nur im Maßnahmebereich erreicht werden (Abb. 6.4). Oberstrom der Maßnahmen kam es bei allen untersuchten Varianten zu einer Erhöhung der Strömungsbelastung. Allerdings ist zu beachten, dass die Untersuchungen die Sohlenreaktion nicht berücksichtigten. Geringfügige Erhöhungen der Strömungsbelastung werden nur kurzzeitig wirksam werden, bis sich der Fluss auf die neuen Bedingungen eingestellt hat (z.B. durch Veränderung der Sohlgeometrie). Die Rückdeichungsvariante erscheint in diesem Zusammenhang als problematisch, da sie Oberstrom der Maßnahme eine sehr starke Belastungszunahme bewirkte. Zur Beseitigung der Engstelle bei km 190 ist die Deichrückverlegung nicht geeignet. Sollte sie aus ökologischen Gründen verfolgt werden, sind Untersuchungen zur Ausführungsplanung erforderlich, um eine Verstärkung der Sohleintiefung oberhalb der Maßnahme zu vermeiden. Unter der Zielsetzung, die Sohlerosion im Hauptgerinne bei El-km 190 einzudämmen, wird die Variante der Uferabgrabung empfohlen, da hier die Strömungsentlastung bei El-km 190 am größten war, die zusätzliche Belastung Oberstrom der Maßnahme aber vergleichsweise gering blieb. Im aerodynamischen Modell wurde ausgehend von diesen Ergebnissen des 2D-HN-Modells eine kleinere Uferabgrabungsvariante untersucht (siehe Kapitel 7.2).

Abb. 6.4: Differenz der Strömungsgeschwindigkeiten im Flussschlauch bezogen auf den Istzustand

Verbesserung der Vorlanddurchströmung:

Mit der Variante der Uferabgrabung konnten die Überflutungs- bzw. Überströmungverhältnisse der Vorländer nicht wesentlich verbessert werden. Die Altarmanbindung führte zu einer deutlich stärkeren Überflutung des linken Vorlandes. Allerdings wurde eine sehr große Flutrinne (annähernd in der Größe des Altarmes) untersucht. Probleme der Verlandung wurden nicht betrachtet. Die Deichrückverlegung führte selbstverständlich zu einer guten Durchströmung des neuen, rechten Vorlandes, verringerte aber den Durchflussanteil des linken Vorlandes. Die untersuchte Grundvariante der Deichrückverlegung müsste bei einer Realisierung in jedem Fall stark modifiziert werden, da die ermittelten hydraulischen und morphologischen Veränderungen nicht toleriert werden können. Das Ein- und Durchströmungsverhalten kann durch Modifizierung des Altdeichs (z.B. Schlitzung) und eine Variation der Rauheit im künftigen Vorland (z.B. Vorlandstrukturierung, Auwald) verändert werden. Anzumerken ist, dass bei allen untersuchten Varianten die Überflutung der Vorländer Oberstrom der Maßnahme durch den Wasserspiegelabsunk später als im Nullzustand einsetzte.

Bisher wurden Untersuchungsergebnisse in [BAW, 1998c und 1999a] vorgestellt. Ein zusammenfassendes Gutachten [BAW, 2001a] ist in Vorbereitung. Veröffentlichungen sind Kap. 2 zu entnehmen.